Пример расчета стропильной системы: Калькулятор стропил онлайн расчет для крыши

Калькулятор стропил онлайн расчет для крыши

Расчет стропил не простаяя задача, однако, если Вы попали к нам на сайт, то рассчитать сможете гораздо легче и правильнее
длину стропил, получить угол наклона крыши и сечение самих стропил становится элементарно. В этом Вам поможет Калькулятор стропил. Нагрузки, сечение и геометрия.
Все, что от вас нужно сделать – это заполнить данные во всех вкладках, ответ будет в четвертой РЕЗУЛЬТАТ.

Порядок работы:
1. Вкладка 1. Геометрия.

a. Укажите половину ширины пролета «B» и длину свесов «S».

b. Выберите вариант расчет через угол крыши А, либо через высоту стойки Н и задайте значение
2.
Вкладка 2. Нагрузки.


a. Задайте снеговой и ветровой район (калькулятор снеговых и ветровых нагрузок)

b. Укажите тип местности, где будет стоять объект

c. Выберите материал кровли
d. Задайте шаг стропил
3.
Вкладка 3. Сечение

a. Задайте сорт дерева (1, 2 или 3 сорт)

b. На выбор укажите ширину стропильной ноги, либо отношение высоты к ширине h/b
4. Вкладка Результат

Нажмите кнопку «Расчет», итоговые значения сформируются в таблицу.

Для справки:

— расчетное сопротивление на изгиб дерева равно 21, 19.5 и 13 МПа для 1, 2 и 3 сортов дерева соответственно согласно СП 64.13330.2017 «Деревянные конструкции»

— коэффициент надежности для снеговой и ветровой нагрузки – 1.4

— коэффициент надежности для постоянной нагрузки – 1.1

— если уклон крыши больше 60 градусов снегововая нагрузка отсутствует

— при значительных свесах стропил (0.8м свеса при полной длине стропил 3м, 1.2м при длине стропил 4м, 1.6м при длине стропил 5м, 2м при длине стропил 6м)
образуется момент над опорой, который может быть больше пролетного момента, а значит и сечение стропил придется брать больше

Если данный калькулятор стропил онлайн оказался Вам полезен – не забывайте делиться им с друзьями и коллегами ссылкой в соц. сети, а также посмотреть другие строительные калькуляторы, они простые но здорово облегчают жизнь строителям и тем кто решил сам строить свой дом с нуля.


Коэффициенты поправки расчетного сопротивления дерева на изгиб приняты следующие:

Mдл = 0.66 — совместное действие постоянной и кратковременной снеговой нагрузок

Mв = 0.9 — нормальные условия эксплуатации дерева (влажность менее 12%)

Mт = 0.8 — эксплуатация дерева при температуре 50 градусов

Mсс = 0.9 — срок эксплуатации конструкции 75 лет

Расчет стропильной системы калькулятор — Всё о кровле

Онлайн калькулятор расчета угла наклона, стропильной системы и обрешетки двускатной крыши дома

Информация по назначению калькулятора

О нлайн калькулятор двускатной (двухскатной) крыши предназначен для расчета угла наклона стропил, количества обрешетки, нагрузки на кровлю, а так же количества необходимого материала для возведения данного типа кровли. В расчете учтены все популярные кровельные материалы, такие как керамическая, цементно-песчанная, битумная и металлическая черепица, ондулин, шифер и др.

Все расчеты выполняются в соответствии с ТКП 45-5.05-146-2009 и СНиП «Нагрузки и воздействия».

Д вускатная (двухскатная, щипцовая) – разновидность форм крыш с двумя наклонными скатами от конька до наружных стен. Данная форма является самой распространенной и самой практичной с точки зрения стоимости, эффективности и внешнего вида. Опирание стропил происходит друг на друга, а их пары соединяются обрешеткой. Стены с торцевой стороны такой крыши, имеют треугольную форму, и называются фронтонами (щипцами). Чаще всего под данным видом кровли устраивается чердачное помещение, освещаемое с помощью небольших фронтонных окон.

При заполнении данных, обратите внимание на дополнительную информацию со знаком Дополнительная информация.

Д алее представлен полный список выполняемых расчетов с кратким описанием каждого пункта. Вы так же можете задать свой вопрос, воспользовавшись формой в правом блоке.

Общие сведения по результатам расчетов

  • У гол наклона крыши — Угол наклона каждого ската. Программа так же подскажет подходит ли данный угол для выбранного кровельного материала. Что бы увеличить или уменьшить, измените параметры ширины основания или высоты подъема.
  • П лощадь поверхности крыши — Общая площадь всей поверхности кровли, с учетом длины свеса.
  • П римерный вес кровельного материала — Вес выбранного кровельного материала на всю площадь крыши.
  • К оличество рубероида — Количество подкровельного материала в рулонах шириной 1 метр и длиной по 15 метров, с учетом нахлеста.
  • Д лина стропил — Длина каждого стропила от конька до основания ската
  • М инимальное сечение стропил — Сечение стропил с учетом выбранных параметров и нагрузок. По умолчанию указаны нагрузки для московского региона.
  • К оличество стропил — Общее количество стропил при заданном шаге на всю стропильную систему.
  • К оличество рядов обрешетки — Общее количество рядов обрешетки по заданным размерам на всю кровлю
  • Р авномерное расстояние между досками обрешетки — Рекомендуемое расстояние между досками обрешеток, для использования материала без подрезки.

Что бы рассчитать двускатную крышу с разными углами наклона каждой стороны, необходимо произвести 2 расчета односкатной крыши с необходимыми параметрами.

Расчет стропил: методика выполнения, примеры, автоматизация

Ни одно здание себе невозможно представить без крыши.

Красивой и надежной.

А что является основой любой крыши?

От того, насколько правильно будет проведен расчет параметров элементов стропильной системы, будет зависеть, насколько крыша будет прочной и надежной.

Поэтому еще на стадии составления проекта здания выполняется отдельный расчет стропильной системы.

Факторы, учитываемые при расчете стропил

Невозможно выполнить расчет правильно, если не учесть интенсивность различных нагрузок, которые будут воздействовать на кровлю дома в разные периоды.

Влияющие на кровлю факторы принято классифицировать на:

  1. Постоянные нагрузки. К этой категории относят те нагрузки, которые на элементы системы стропил воздействуют постоянно.Независимо от времени года. К этим нагрузкам относятся вес кровли, обрешетка, гидроизоляция, тепло — и пароизоляция и все иные элементы крыши, которые имеют фиксированный вес и постоянно создают нагрузку на систему стропил.Если в планах установить на крыше какое-либо оборудование (снегозадержатели, антенна спутникового телевидения, антенна изернета, системы дымоудаления и вентиляции и пр.), то к постоянным нагрузкам следует обязательно прибавить вес такого оборудования.
  2. Переменные нагрузки. Эти нагрузки называют переменными из-за того, что стропильную систему они нагружают только в какой то определенный период времени, а в другое время эта нагрузка минимальна или ее нет вовсе.К таким нагрузкам относится вес снегового покрова, нагрузка от дующих ветров, нагрузка от людей, которые будут обслуживать кровлю и пр.
  3. Особый тип нагрузок. К этой группе относятся нагрузки, которые возникают в районах, где очень часто возникают ураганы или оказывается сейсмическое воздействие.В таком случае нагрузку учитывают, чтобы в конструкцию заложить дополнительный запас прочности.

Расчет параметров стропильной системы довольно сложен.

И новичку его сделать сложно, так как очень много факторов, которые влияют на крышу, необходимо учитывать.

Ведь, кроме вышеперечисленных факторов, необходимо также учесть вес всех элементов стропильной системы и крепежных элементов.

Поэтому на помощь расчетчикам приходят специальные программы для расчета.

Определение нагрузки на стропила

Вес кровельного пирога

Чтобы узнать нагрузку на стропила нашего дома, следует вначале вычислить вес кровельного пирога.

Такой расчет сделать несложно, если знать общую площадь кровли и материалы, которые используются при создании этого самого пирога.

Вначале считают вес одного квадратного метра пирога.

Суммируется масса каждого слоя и умножается на поправочный коэффициент.

Равняется этот коэффициент 1.1.

Вот типичный пример расчета веса кровельного пирога.

Допустим, вы приняли решение в качестве кровельного материала использовать ондулин.

Ведь ондулин является надежным и недорогим материалом. Именно по этим причинам он так популярен среди застройщиков.

  1. Ондулин: его вес составляет 3 кг на 1 квадратный метр.
  2. Гидроизоляция. Используется полимерно-битумный материал. Один квадратный метр ее весит 5 кг.
  3. Слой утеплителя. Используется минеральная вата. Вес одного квадрата составляет 10 кг.
  4. Обрешетка, доски толщиной 2.5 см. Вес 15 кг.

Суммируем полученные данные: 3+5+10+15= 33 кг.

Теперь полученный результат необходимо умножить на 1.1.

Наш поправочный коэффициент.

Итоговая цифра получается 34.1 кг.

Это вес одного квадратного метра кровельного пирога.

Общая площадь кровли, например, 100 кв. метров.

Значит, весить она будет 341 кг.

Вот в этом и есть одно из преимуществ ондулина.

Рассчитываем снеговую нагрузку

Момент очень важный.

Потому, что во многих районах нашей зимой выпадает довольно приличное количество снега.

А это очень большой вес, который обязательно учитывают!

Хотя такая нагрузка является переменной.

Для расчета снеговой нагрузки используется карта снеговых нагрузок.

Определяете свой регион и выполняете расчет снеговой нагрузки по формуле

— S является искомой снеговой нагрузкой;

— Sg – масса снежного покрова.

Учитывается вес снега на 1 кв. метр.

Этот показатель свой в каждом регионе.

Все зависит от месторасположения дома.

Для определения массы и используется карта.

— µ — это коэффициент поправки.

Зависит показатель этого коэффициента от угла наклона кровли.

Если угол наклона скатов составляет меньше 25 градусов, то коэффициент равняется 1.

Об уклоне плоской кровли по ссылке. Зачем нужен плоской крыше уклон и какова его минимальная величина.

Фотографии карнизных свесов кровли здесь. Чем подшиваются карнизные свесы.

При угле наклона 25 — 60 градусов коэффициент равняется 0.7.

Если угол наклона больше, чем 60 градусов, то коэффициент не учитывается.

Например, дом построен в Московской области.

Скаты имеют угол наклона 30 градусов.

Карта нам показывает, что дом располагается в 3 районе.

Масса снега на 1 кв. метр составляет 180 кг.

Выполняем расчет, не забывая про коэффициент поправки:

180 х 0,7= 126 килограмм на 1 кв. метр кровли.

Определение ветровых нагрузок

Для расчета нагрузок от ветра также используют специальную карту с разбивкой по зонам.

Используют такую формулу:

Wo – это нормативный показатель, определяемый по таблице.

В каждом регионе существуют свои таблицы ветров.

А показатель k – это поправочный коэффициент, который зависит от высоты дома и типа местности.

Рассчитываем деревянные стропила

Длина стропил

Расчет длины стропильной ноги относится к самым простым геометрическим расчетам.

Поскольку вам понадобится всего лишь два размера: ширина и высота, а также теорема Пифагора.

Чтобы расчет был более понятным, посмотрите на рисунок ниже.

Нам известны два расстояния:

— а – это высота от нижней до верхней точки внутренней части стропил.

— b – это величина, равная половине ширины крыши.

— с – это гипотенуза треугольника.

Та самая стропильная нога. длину которой мы ищем.

Дальше в соответствии с теоремой Пифагора

Теперь надо получить корень квадратный из 13.

Можно, конечно, взять таблицы Брадиса, но на калькуляторе удобнее.

Получаем 3.6 метра.

К этому числу теперь нужно прибавить длину выноса d чтобы получить искомую длину стропил.

Рассчитываем и подбираем сечение элементов стропильной системы

Сечение досок, которые мы будем использовать для изготовления стропил и прочих элементов системы стропил, зависит от того, какую длину имеют стропила, с каким шагом они будут устанавливаться и от величин снеговой и ветровой нагрузки, которые существуют в конкретном регионе.

Для простых конструкций используют таблицу типовых размеров и сечений доски.

Если конструкция очень сложная, то лучше использовать специальные программы.

Рассчитываем шаг и количество стропильных ног

Шагом стропил называется расстояние между их основаниями.

Специалисты считают, что минимальное расстояние должно составлять 60 см.

А оптимальным расстоянием является 1 метр.

Выполняем расчет расстояния между стропилами:

  • выполняем измерение дины ската по карнизу;
  • затем полученную цифру следует разделить на предполагаемый шаг стропил. Если шаг планируется 60 см, то следует делить на 0.6.Если 1 метр – то делить на 1. О предварительном выборе шага будет дальше;
  • затем к поученному результату следует прибавить 1 и округлить полученное значение в большую сторону. Таким образом, получаем количество стропил, которые могут быть установлены на крыше вашего дома;
  • общую длину ската необходимо разделить на количество стропил, чтобы получить шаг стропил.

Например, длина ската кровли равняется 12 метров.

Предварительно выбираем шаг стропил 0.8 метра.

Далее расчеты выглядят так:

12/0.8 = 15 метров.

Прибавляем единицу 15+1=16 стропил.

Если бы получилось дробное число, то мы бы округлили его в большую сторону.

Теперь от 12 метров следует поделить на 16.

В итоге 1216=0.75 метра.

Вот оптимальное расстояние между стропилами на одном скате.

Также может быть использована таблица, о которой говорилось раньше.

Рассчитываем деревянные балки перекрытия

Для деревянных балок оптимальная величина пролета составляет от 2.5 до 4 метров.

Оптимальное сечение – прямоугольное.

Соотношение высоты и ширины 1.4:1.

В стену балка должна заходить не менее чем на 12 см.

В идеале балки крепят к анкерам, который заранее установлен в стене.

Гидроизоляция балок выполняется «по кругу».

При расчете сечения балок учитывается нагрузка от собственного веса (как правило, 200 кг/кв. метр), и эксплуатационная временная нагрузка.

Ее значение равняется нагрузке постоянной – 200 кг/кв. метр.

Зная величину пролета и шаг установки балок, по таблице высчитывается их сечение:

Пролет (м)/ Шаг установки (м)

Расчет стропил односкатной крыши

Односкатная крыша – самый простой вариант кровли.

Но такой вариант подходит не для каждой постройки.

И расчет стропил требуется в любом случае.

Расчеты односкатной кровли начинаются с определения угла наклона.

А зависит он от того, в первую очередь, какой материал вы планируете использовать для крыши.

Например, для профнастила минимальный угол равняется 8 градусов.

А оптимальный – 20 градусов.

Калькуляторы и онлайн-калькуляторы

Да, рассчитать параметры стропильной системы не так просто.

Очень много факторов должно быть учтено при таких расчетах.

И все следует посчитать без малейшей ошибки!

Чтобы точность расчетов была близка к идеальной, были придуманы специальные калькуляторы, которые автоматически выполняют расчет параметров.

От человека требуется только занести данные в определенную форму.

Все остальное компьютер сделает сам.

На сегодняшний день такие калькуляторы – это лучшие помощники при обустройстве крыши!

Расчетные программы

Если онлайн-калькуляторы выполняют несложные расчеты, то специальное программное обеспечение способно посчитать все, что вам нужно.

И таких программ довольно много!

Самыми известными из них являются 3D Max и Автокад.

У таких программ всего два недостатка:

  • чтобы ими пользоваться, необходимо обладать определенными знаниями и опытом;
  • такие программы платные.

Существует ряд бесплатных программ.

Она прекрасно рассчитывает параметры стропильной системы.

Большинство программ можно скачать на свой компьютер.

Или пользоваться ими онлайн.

Видео о расчете стропил.

Что еще почитать по теме?

Как произвести расчет стропильной системы двухскатной крыши с помощью онлайн калькулятора

Описание полей калькулятора

Рекомендации

Сделать все расчеты перед началом работ по возведению крыши достаточно просто. Единственное, что требуется – это скрупулезность и внимательность, не следует также забывать о проверке данных, после завершения процесса.

Одним из параметров, без которого в процессе расчетов не обойтись будет общая площадь крыши. Следует изначально понимать что этот показатель представляет, для лучшего понимания всего процесса вычисления.

Имеются некоторые общие положения, которых рекомендуется придерживаться в процессе расчета:

  1. Первым делом определяется длина каждого из скатов. Эту величина равна промежуточному расстоянию между точками в самой верхней части (на коньке) и самой нижней (карниз).
  2. Вычисляя такой параметр необходимо учитывать все дополнительные кровельные элементы, например, парапет. свес и любого рода сооружения, которые добавляют объем.
  3. На этом этапе также должен быть определен материал, из которого будет конструироваться кровля.
  4. Не нужно учитывать при вычислениях площади элементы вентиляции и дымохода.

Приведенные выше моменты применимы в случае с обычной крышей, имеющей два ската, но если план дома предполагает наличие мансарды или иную разновидность формы крыши, то расчеты рекомендуется проводить только с помощью специалиста.

Лучше всего вам поможет в расчетах калькулятор стропильной системы двухскатной крыши.

Расчет стропильной системы двухскатной крыши: калькулятор

Расчет параметров стропил

Отталкиваться в данном случае нужно от шага, который выбирается с учетом конструкции крыши индивидуально. На этот параметр влияет выбранный кровельный материал и общий вес крыши.

Варьировать такой показатель может от 60 до 100 см.

Чтобы вычислить количество стропил необходимо:

  • Узнать длину ската;
  • Разделить на выбранный параметр шага;
  • К результату прибавить 1;
  • Для второго ската, показатель умножить на два.

Следующий параметр для определения — это длина стропил. Для этого нужно вспомнить теорему Пифагора, по ней проводится данный расчет. Для формулы необходимы такие данные:

  • Высота крыши. Эту величину выбирает каждый индивидуально в зависимости от необходимости обустраивать жилое помещение под крышей. Например, такая величина будет равняться 2 м.
  • Следующая величина – это половина от ширины дома, в данном случае – 3м.
  • Величина, которую необходимо узнать – это гипотенуза треугольника. Высчитав этот параметр, отталкиваясь от данных для примера, получается 3, 6 м.

Важно: к полученному результату длины стропил, следует прибавить 50-70 см с расчетом на запил.

Кроме того, следует определить какой ширины выбирать стропила для монтажа.

Стропила можно изготовить своими руками, как это сделать, вы можете прочитать здесь .

Для такого параметра нужно учитывать:

  • Нагрузку крыши;
  • Тип древесины, выбранной для конструкции;
  • Длину стропила;
  • Расстояние шага расположения стропил.

Расчет параметров стропил

Определение угла наклона

Можно для такого расчета исходить из материала кровли, который будет использоваться в дальнейшем, ведь у каждого из материалов имеются свои требования:

  • Для шифера размер угла ската должен быть более 22 градусов. Если угол будет меньше, то это сулит попаданием воды в зазоры;
  • Для металлочерепицы такой параметр должен превышать 14 градусов, в ином случае листы материала могут быть сорваны веером;
  • Для профнастила угол может быть не меньше, чем 12 градусов;
  • Для битумной черепицы такой показатель должен равняться не более чем 15 градусов. Если угол будет превышать такой показатель, то есть вероятность сползания материала с кровли во время жаркой погоды, т.к. прикрепление материала проводят на мастику;
  • Для материалов рулонного типа, вариации значения угла могут быть в пределах от 3 до 25 градусов. Этот показатель зависит от числа слоев материала. Большее количество слоев позволяет сделать угол наклона ската большим.

Стоит понимать, что чем больше угол ската, тем больше площади свободного пространства под крышей, однако и материала требуется для такой конструкции больше, а, соответственно и затрат.

Более подробно про оптимальный угол наклона вы можете прочитать здесь .

Важно: минимально допустимое значение угла ската равно 5 градусов.

Формула для расчета угла ската проста и очевидна, учитывая, что изначально имеются параметры ширины дома и высоты конька. Представив в разрезе треугольник, можно подставлять данные и проводить вычисления, пользуясь таблицами Брадиса или калькулятором инженерного типа.

Нужно вычислить тангенс острого угла в треугольнике. В данном случае он будет равен 34 градусам.

Формула: tg β = Нк / (Lосн/2) = 2/3 = 0,667

Определение угла наклона крыши

Расчет нагрузок на стропильную систему

Прежде, чем приступать к данному разделу расчетов, нужно рассмотреть всевозможные нагрузки на стропила. Стропильная система бывает разных видов. что так же влияет на нагрузку. Виды нагрузок:

  1. Постоянный. Этот вид нагрузки ощутим стропилами постоянно, его оказывает конструкция кровли, материал, обрешетка, утеплительный материал. пленки и другие мелкие элементы системы. Средняя величина такого параметра равна 40-45 кг/м 2 .
  2. Переменный. Этот вид нагрузки зависит от климата и зоны расположения строения, поскольку его составляют осадки в данном регионе.
  3. Особый. Этот параметр актуален в том случае, если место расположения дома – это сейсмически активная зона. Но в большей части случаев хватает добавочной прочности.

Важно: лучше всего при расчете прочности сделать запас, для этого к полученной величине прибавляется 10%. Также стоит взять во внимание рекомендацию о том, что 1 м 2 не должен брать на себя вес, больше 50 кг.

Очень важно учесть и нагрузку, оказываемую ветром. Показатели этой величины можно взять из СНиПа в разделе «Нагрузки и воздействия».

Чтобы рассчитать нагрузку, производимую снегом, нужно:

  • Узнать параметр веса снега. Варьирует в основном такой показатель от 80 до 320 кг/м 2 .;
  • Умножить на коэффициент, который необходим для учета ветрового давления и аэродинамических свойств. Данная величина указана в таблице СНиП и применяется индивидуально. Источник СНиП 2.01.07-85.

Если угол наклона ската больше 45 градусов, то расчет снеговой нагрузки не проводят, поскольку такой скат обеспечит сползание снега.

Количество кровли

Количество материала для кровли вычисляется очень просто, учитывая, что все параметры для расчетов были получены в процессе.

Рассматривая вычисления на том же примере, следует вычислить общую площадь крыши.

После этого можно узнать количество листов металлочерепицы (в данном примере), которые потребуется закупить для строительства.

Для этого необходимо получившееся значение площади крыши разделить на площадь одного листа металлочерепицы.

Как рассчитать площадь двускатной крыши:

  • Длина крыши в данном примере равна 10м. Чтобы узнать такой параметр, необходимо замерить длину конька;
  • Длина стропила была вычислена и равняется 3,6м (+0,5-0,7м.) ;
  • Исходя из этого, площадь одного ската будет равна – 41 м 2. Общее значение площади – 82 м 2. т.е. площадь одного ската, умноженная на 2.

Важно: не забывать про припуски для козырьков крыши в 0,5-0,7 м.

Заключение

Все расчеты лучше всего их несколько раз проверить во избежание ошибок. Когда этот кропотливый подготовительный процесс будет завершен, можно смело приступать к закупке материала и подготавливать его в соответствии с полученными размерами.

После этого процесс монтажа крыши будет простым и быстрым. А в расчетах вам поможет наш калькулятор двухскатной крыши.

Полезное видео

Видео-инструкция по пользованию калькулятором:

Источники: http://stroy-calc.ru/raschet-dvuhskatnoy-krishi, http://proroofer.ru/montaz/stropilnye-sistemy/raschet-stropil.html, http://expert-dacha.pro/stroitelstvo/krysha/vidy-krysh/dvuskatnaja/raschet-stropilnoj-sistemy.html

Расчет стропильной системы

Погода в нашей стране не выделяется постоянством, поэтому стропильная система при любой погоде должна иметь достаточные показатели прочности и надежности.

Какая бы форма крыши не была выбрана, стропильная система должна быть прочной. Для этого необходимо предварительно выполнить расчёт стропильной системы. Это задача архитектора и проектировщика – не только спроектировать внешнюю форму, но и индивидуально подойти к расчету прочности стропильной системы вашего дома.

В расчет стропильной системы закладывается достаточно много параметров. Среди них и вес кровельных материалов (металлочерепица, ондулин, мягкая кровля или натуральная черепица), материалов внутренней отделки, общий вес самой стропильной конструкции, а также климатические нагрузки.

Расчёт стропильной системы – это обязательные расчеты по следующим позициям:

   1. Расчет сечения стропил

   2. Расчет расстояния между стропилами («шаг»)

   3. Расчет пролетов стропильной системы

   4. Разработка стропильной фермы, выбор стропильной конструкции (висячие стропила или наслонные).

   5. Анализ несущей способности опор и фундамента

   6. Расчет необходимости таких элементов, как: раскосы («разгружают» стропила), затяжки (связывают стропильную конструкцию, не давая ей «разъезжаться»).

Для типовых проектов расчёт стропильной системы выполнен заранее, а вот для индивидуального проекта требуется индивидуальный подход.

Выполнять расчёт стропильной системы должен квалифицированный специалист. Ниже рассмотрим некоторые параметры, влияющие на общую нагрузку.

Требования к подготовке элементов стропильной конструкции

Деревянные элементы стропильной конструкции выполняют из древесины хвойных пород с влажностью не более 20%, предварительно обработанной защитными составами в соответствии с требованиями СНиП 2.03.11-85 “Защита строительных конструкций от коррозии”, глава 3 “Деревянные конструкции”, а также требованиям СНиП 2.01.02-85 “Противопожарные нормы” п. 1.8.

Нагрузки, влияющие на стропильную конструкцию

В зависимости от продолжительности действия нагрузок, следует их разделить на две группы — постоянные и временные (длительные, кратковременные, особые).

К постоянным нагрузкам относится нагрузка от веса самой стропильной конструкции и обрешётки, кровельных материалов, веса теплоизоляционного кровельного слоя и веса материалов, используемых для отделки потолка.

К кратковременным нагрузкам  относятся: вес кровельщиков, ремонтного оборудования и инструмента в зоне обслуживания и ремонта кровли, снеговую и ветровую нагрузку.

К особым нагрузкам, например, относят сейсмическое воздействие.

Расчёт стропильной системы по предельным состояниям первой и второй групп нагрузок следует выполнять с учётом неблагоприятного их сочетания.

 

Снеговая нагрузка

Полное расчётное значение снеговой нагрузки определяется по формуле,

    S=Sg*µ

где,

Sg — расчётное значение веса снегового покрова на 1м2 горизонтальной поверхности   земли, принимаемое по таблице,

Снеговой районIIIIIIIVVVIVIIVIII
Sg (кгс/м2)80120180240320400480560

µ — коэффициент перехода от веса снегового покрова земли к снеговой нагрузке на покрытие.

Коэффициент µ зависит от угла наклона ската кровли:

µ=1 при углах наклона ската кровли меньше 25°.

µ=0,7 при углах наклона ската кровли от 25 до 60°.

При угле наклона ската кровли по горизонту более 60° значение снеговой нагрузки в полном расчёте стропильной системы не учитывают.

Карта снеговых нагрузок

Ветровая нагрузка

Расчётное значение средней составляющей ветровой нагрузки на высоте z над поверхностью земли определяется по формуле:

W=Wo*k

где,

Wo — нормативное значение ветровой нагрузки, принимаемое по таблице ветрового района

Ветровой районIaIIIIIIIVVVIVII
Wo (кгс/м2)1723303848607385

k — коэффициент, учитывающий изменение ветрового давления по высоте, определяется по таблице, в зависимости от типа местности.

Высота здания в метрахАB
50,750,5
1010,65
201,250,85

А — открытые побережья морей, водохранилищ и озёр, пустыни, тундры, степи и лесостепи.

B — городские районы, лесные массивы и др. местности, равномерно покрытые препятствиями, высота которых более 10 м.

*При определении ветровой нагрузки типы местности могут отличаться для разных расчётных направлений ветра.

Карта ветровых нагрузок:

Расчёт сечения стропил и других элементов стропильной системы

Сечение бруса, используемого для стропил, зависит от длины стропильных ног, шага установки стропил и расчетной величины нагрузок для данных регионов. Данные в таблице не могут заменить полноценный расчет стропильной системы, ими можно воспользоваться в качестве рекомендуемых для простых конструкций крыши. В таблице представлены значения, которые соответствуют возможным максимальным нагрузкам на стропильную систему для Москвы и Подмосковья.

Шаг установки стропил (мм)Длина стропильных ног (мм)
3000350040004500500055006000
60040х15040х17550х15050х15050х17550х20050х200
90050х15050х17550х20075х17575х17575х20075х200
110075х12575х15075х17575х17575х20075х200100х200
140075х15075х17575х20075х20075х200100х200100х200
175075х15075х20075х200100х200100х200100х250100х250
2150100х150100х175100х200100х200100х250100х250

Возможные сечения других элементов стропильной системы:

для мауэрлата: брус 100х100мм, 100х150мм, 150х150мм.

для диагональных ног и ендов: брус, сечением 100х200мм.

прогоны: брус 100х100мм, 100х150мм, 100х200мм.

затяжки: брус 50х150мм.

для ригелей выступающих опорой для стоек: брус 100х150мм, 100х200мм.

стойки: брус 100х100мм или 150х150мм.

кобылки, доски карнизного короба, подкосы: брус 50х150мм.

лобовые доски, подшивочные доски: 22-25х100-150мм.

Расчет основных размеров стропил — Все Про Бетон

Как рассчитать длину стропил двухскатной крыши, учитывая нагрузки – правила расчета

Содержание:

В статье пойдет речь о том, как рассчитать стропила на двухскатную крышу и вычислить различные нагрузки, приходящиеся на кровлю.

Крыша в здании предназначена для удержания внешних нагрузок и их перераспределения на несущие стены или опорные сооружения. К таким нагрузкам относится вес кровельного пирога, масса самой конструкции, вес снежного покрова и так далее.

Крыша располагается на стропильной системе. Так называется каркасная конструкция, на которую фиксируется кровля. Она принимает все внешние нагрузки, распределяя их по опорным сооружениям.

Стропильная система включает в себя следующие элементы:

  • Мауэрлат;
  • Подкосы и раскосы;
  • Боковые и коньковые прогоны;
  • Стропильные ноги.

Стропильной фермой называется конструкция, включающая в себя все перечисленные элементы за исключением мауэрлата.

Расчет нагрузок двухскатной крыши

Перед тем, как рассчитать длину стропил двухскатной крыши и прочие параметры, необходимо определить нагрузки, приходящиеся на кровлю дома, вернее, на стропильные ноги. Их принято разделять на постоянные и переменные.

Постоянные нагрузки

Первым видом называются такие нагрузки, которые действуют на кровлю всегда (в любой сезон, время суток и так далее). К ним относится вес кровельного пирога и различного оборудования, установленного на крыше.

Например, вес спутниковой антенны или аэратора. Необходимо вычислить вес всей стропильной конструкции вместе с крепежами и различными элементами.

Профессионалы для выполнения этой задачи используют компьютерные программы, а также специальные калькуляторы.

Расчет двухскатной кровли основывается на вычислении нагрузок на стропильные ноги. В первую очередь нужно определить вес кровельного пирога. Задача довольно простая, необходимо просто знать используемые материалы, а также размеры крыши.

В качестве примера вычислим вес кровельного пирога с материалом ондулин. Все значения берутся приблизительно, высокая точность здесь не требуется. Обычно строители выполняют расчеты веса квадратного метра кровли. А потом данный показатель умножается на общую площадь крыши.

Кровельный пирог состоит из ондулина, слоя гидроизоляции (в данном случае — изоляции на полимерно-битумной основе), слоя теплоизоляции (будет вестись расчет веса базальтовой ваты) и обрешетки (толщина досок составляет 25 мм). Вычислим вес каждого элемента по отдельности, а потом сложим все значения.

Расчет кровли двухскатной крыши:

  1. Квадратный метр кровельного материала весит 3.5 кг.
  2. Квадратный метр гидроизоляционного слоя весит 5 кг.
  3. Квадратный метр утеплителя весит 10 кг.
  4. Квадратный метр обрешетки весит 14 кг.

Теперь вычислим общий вес:

3.5 + 5 + 10 + 14 = 32.5

Полученное значение нужно умножить на коэффициент поправки (в данном случае он равен 1.1).

32.5 * 1.1 = 35.75 кг

Получается, что квадратный метр кровельного пирога весит 35.75 кг. Остается умножить данный параметр на площадь крыши, тогда получится рассчитать двухскатную крышу.

Переменные нагрузки на кровлю

Переменными называются такие нагрузки, которые действуют на крышу не постоянно, а сезонно. Ярким примером является снег в зимнее время. Снежные массы оседают на кровле, создавая дополнительное воздействие. Но весной они тают, соответственно, давление снижается.

К переменным нагрузкам относится и ветер. Это тоже погодное явление, которое действует не всегда. И таких примеров очень много. Поэтому важно учитывать переменные нагрузки при расчете длины стропил двускатной крыши. При вычислении нужно брать во внимание множество различных факторов, воздействующих на крышу здания.

Теперь подробнее рассмотрим снеговые нагрузки. При расчете данного параметра нужно использовать специальную карту. Там размечена масса снежного покрова в различных регионах страны.

Для вычисления данного вида нагрузки используется следующая формула:

S = Sg х µ

Где Sg — показатель местности, взятый по карте, а µ — поправочный коэффициент. Он зависит от уклона крыши: чем уклон сильнее, тем меньше коэффициент поправки. И тут есть важный нюанс — для крыш с уклоном от 60o его совсем не учитывают. Ведь с них снег будет просто скатываться, а не скапливаться.

Вся страна разделена на районы не только по массе снега, но и по силе ветров. Имеется специальная карта, на которой можно узнать данный показатель в определенной местности.

При расчете стропил кровли ветровые нагрузки определяются по следующей формуле:

W = Wo * x

Где x — коэффициент поправки. Он зависит от месторасположения строения и его высоты. А Wo — параметр, выбранный по карте.

Расчет размеров стропильной системы

Когда с расчетом всех видов нагрузок покончено, можно переходить вычислению размеров стропильной системы. Выполнение работы будет отличаться в зависимости от того, какая конструкция крыши планируется.

В данном случае рассматривается двухскатная.

Сечение стропильной ноги

Расчет данного показателя основывается на 3 критериях:

  • Нагрузки из предыдущего раздела;
  • Удаленность перил;
  • Длина стропил.

Существует специальная таблица сечений стропильных ног, в которой можно узнать данный показатель, основываясь на вышеописанных критериях.

Длина стропил в двускатной крыше

Теперь разберемся, как рассчитать кровлю двухскатной крыши. Для такой конструкции требуется монтаж более сложной стропильной системы.

При расчетах вручную потребуются базовые знания геометрии, в частности — теоремы Пифагора. Стропило — гипотенуза прямоугольного треугольника. Ее длину получится узнать, если разделить длину катета на косинус противолежащего угла.

Рассмотрим конкретный пример:

Требуется расчет длины стропил двухскатной крыши для дома с шириной 6 м, у которого наклон скатов равен 45o. Пусть L будет длиной стропил. Подставим все данные в формулу.

L = 6 / 2 / cos 45 ≈ 6 / 2 / 0.707 ≈ 4.24 метра.

К полученному значению нужно прибавить длину козырька. Она приблизительно равна 0.5 м.

4.24 + 0.5 = 4.74 метра.

На этом исчисление длины стропил для двухскатной крыши закончено. Это был ручной способ выполнения задачи. Существуют специальные компьютерные программы, предназначенные для автоматизации данного процесса. Проще всего использовать «Аркон». Это полностью бесплатная программа, с которой легко разберется даже плохо разбирающийся в компьютерах человек.

Достаточно просто указать вводные параметры на основании размеров дома. Программа самостоятельно выполнит расчеты и покажет необходимое сечение, а также длину стропил двускатной крыши.

Источник: https://kryshadoma.com/stropilnaya-sistema/kak-rasschitat-dlinu-stropil-dvukhskatnoy-kryshi-uchityvaya-nagruzki-pravila-rascheta.html

Как рассчитать стропила для крыши: расчет длины, угла, сечения, нагрузки

Проектирование и грамотные расчеты элементов стропильной конструкции – залог успеха в строительстве и в последующей эксплуатации крыши. Она обязана стойко сопротивляться совокупности временных и постоянных нагрузок, при этом по минимуму утяжелять постройку.

Для производства вычислений можно воспользоваться одной из многочисленных программ, выложенных в сети, или все выполнять вручную. Однако в обоих случаях требуется четко знать, как рассчитать стропила для крыши, чтобы досконально подготовиться к строительству.

Специфика расчета стропильного каркаса

Стропильная система определяет конфигурацию и прочностные характеристики скатной крыши, выполняющей ряд значимых функций. Это ответственная ограждающая конструкция и важная составляющая архитектурного ансамбля. Потому в проектировании и расчетах стропильных ног следует избегать огрехов и постараться исключить недочеты.

Как правило, в проектных разработках рассматривается несколько вариантов, из которых выбирается оптимальное решение. Выбор наилучшего варианта вовсе не означает, что нужно составить некое число проектов, выполнить для каждого точные вычисления и в итоге предпочесть единственный.

Сам ход определения длины, монтажного уклона, сечения стропилин заключается в скрупулезном подборе формы конструкции и размеров материала для ее сооружения.

Например, в формулу вычисления несущей способности стропильной ноги первоначально вводят параметры сечения наиболее подходящего по цене материала. А если результат не соответствует техническим нормам, то увеличивают или уменьшают размеры пиломатериала, пока не добьются максимального соответствия.

Метод поиска угла наклона

У определения угла уклона скатной конструкции есть архитектурные и технические аспекты. Кроме пропорциональной конфигурации, наиболее подходящей по стилистике здания, безукоризненное решение должно учитывать:

  • Показатели снеговой нагрузки. В местностях с обильным выпадением осадков возводят крыши с уклоном от 45º и более. На скатах подобной крутизны не задерживаются снежные залежи, благодаря чему ощутимо сокращается суммарная нагрузка на кровлю, стопила и постройку в целом.
  • Характеристики ветровой нагрузки. В районах с порывистыми сильными ветрами, прибрежных, степных и горных областях, сооружают низко-скатные конструкции обтекаемой формы. Крутизна скатов там обычно не превышает 30º. К тому же ветра препятствуют образованию снежных залежей на крышах.
  • Масса и тип кровельного покрытия. Чем больше вес и мельче элементы кровли, тем круче нужно сооружать стропильный каркас. Так надо, чтобы сократить вероятность протечек через соединения и уменьшить удельный вес покрытия, приходящийся на единицу горизонтальной проекции крыши.

Для того чтобы выбрать оптимальный угол наклона стропилин, проектом необходимо учесть все перечисленные требования. Крутизна будущей крыши обязана соответствовать климатическим условиям выбранной для строительства местности и техническим данным кровельного покрытия.

Правда владельцам собственности в северных безветренных областях следует помнить, что при увеличении угла наклона стропильных ног возрастает расход материалов. Сооружение и обустройство крыши крутизной 60 – 65º обойдется приблизительно в полтора раза дороже, чем возведение конструкции с углом в 45º.

В местностях с частыми и сильными ветрами не стоит слишком сокращать уклон в целях экономии. Излишне пологие крыши проигрывают в архитектурном отношении и не всегда способствуют снижению цифры расходов. В таких случаях чаще всего требуется усиление изоляционных слоев, что в противовес ожиданиям эконома приводит к удорожанию строительства.

Уклон стропилин выражается в градусах, в процентах или в формате безразмерных единиц, отображающих отношение половины метража пролета к высоте установки конькового прогона. Понятно, что градусами очерчивается угол между линией потолочного перекрытия и линией ската. Процентами редко пользуются из-за сложности их восприятия.

Самый распространенный метод обозначения угла наклона стропильных ног, применяемый как проектировщиками малоэтажных строений, так и строителями, это безразмерные единицы.

Они в долях передают отношение длины перекрываемого пролета к высоте крыши.

На объекте проще всего найти центр будущей фронтонной стенки и установит в нем вертикальную рейку с отметкой высоты конька, чем откладывать углы от края ската.

Расчет длины стропильной ноги

Длину стропилины определяют после того, как выбран угол наклона системы. Оба указанных значения нельзя отнести к числу точных величин, т.к. в процессе вычисления нагрузки как крутизна, так и следом за ней длина стропильной ноги может несколько изменяться.

К основным параметрам, влияющим на проведение расчетов длины стропил, относится тип карнизного свеса крыши, согласно чему:

  1. Внешний край стропильных ног обрезается заподлицо с наружной поверхностью стены. Стропила в этой ситуации не формируют карнизный свес, защищающий конструкцию от осадков. Для защиты стен устанавливается водосток, закрепленный на прибитой к торцевому краю стропилин карнизной доске.
  2. Обрезанные заподлицо со стеной стропила наращиваются кобылками для образования карнизного свеса. Кобылки крепят к стропилинам гвоздями после сооружения стропильного каркаса.
  3. Стропила изначально раскраиваются с учетом длины карнизного свеса. В нижнем сегменте стропильных ног выбирают врубки в виде угла. Для формирования врубок отступают от нижнего края стропилин на ширину карнизного выноса. Врубки нужны для увеличения опорной площади стропильных ног и для устройства опорных узлов.

На стадии расчета длины стропильных ног требуется продумать варианты крепления каркаса крыши к мауэрлату, к перепускам или к верхнему венцу сруба. Если задумана установка стропилин заподлицо с внешним контуром дома, то расчет проводится по длине верхнего ребра стропилины с учетом размера зуба, если он используется для формирования нижнего соединительного узла.

Если стропильные ноги раскраиваются с учетом карнизного выноса, то длину рассчитывают по верхнему ребру стропилины вместе со свесом. Отметим, что применение треугольных врубок ощутимо ускоряет темпы возведения стропильного каркаса, но ослабляет элементы системы. Потому при расчетах несущей способности стропилин с выбранными углом врубками применяется коэффициент 0,8.

Среднестатистической шириной карнизного выноса признаны традиционные 55 см. Однако разброс может быть от 10 до 70 и больше. В расчетах используется проекция карнизного выноса на горизонтальную плоскость.

Есть зависимость от прочностных характеристик материала, на основании чего изготовитель рекомендует предельные значения. К примеру, производители шифера не советуют выносить кровлю за контур стен на расстояние свыше 10 см, чтобы накапливающаяся вдоль свеса крыши снежная масса не смогла повредить край карниза.

Крутые крыши не принято оборудовать широкими свесами, независимо от материала карнизы не делают шире 35 – 45 см. А вот конструкции с уклоном до 30º может отлично дополнить широкий карниз, который послужит своеобразным навесом в областях с избыточным солнечным освещением. В случае проектирования крыш с карнизными выносами по 70 и более см, их укрепляют дополнительными опорными стойками.

Как вычислить несущую способность

В сооружении стропильных каркасов применяются пиломатериалы, выполненные из хвойных пород древесины. Заготовленный брус либо доска должны быть не ниже второго сорта.

Стропильные ноги скатных крыш работают по принципу сжатых, изогнутых и сжато-изогнутых элементов. С задачами сопротивления сжатию и изгибу второсортная древесина превосходно справляется. Только в случае, если элемент конструкции будет работать на растяжение, требуется первый сорт.

Стропильные системы устраивают из доски или бруса, подбирают их с запасом прочности, ориентируясь на стандартные размеры выпускаемого поточно пиломатериала.

Расчеты несущей способности стропильных ног проводятся по двум состояниям, это:

  • Расчетное. Состояние, при котором в результате приложенной нагрузки конструкция разрушается. Вычисления проводятся для суммарной нагрузки, которая включает вес кровельного пирога, ветровую нагрузку с учетом этажности постройки, массу снега с учетом уклона крыши.
  • Нормативное. Состояние, при котором стропильная система прогибается, но разрушение системы не происходит. Эксплуатировать крышу в таком состоянии обычно нельзя, но после проведения ремонтных операций она вполне пригодна для дальнейшего использования.

В упрощенном расчетном варианте второе состояние является 70 % от первой величины. Т.е. для получения нормативных показателей расчетные значения нужно банально помножить на коэффициент 0,7.

Нагрузки, зависящие от климатических данных региона строительства, определяются по картам, приложенным к СП 20.13330.2011. Поиск нормативных значений по картам предельно прост – нужно найти место, где расположен ваш город, коттеджный поселок или другой ближайший населенный пункт, и снять показания о расчетном и нормативном значении с карты.

Усредненные сведения о снеговой и ветровой нагрузке следует скорректировать согласно архитектурной специфике дома. Например, снятое с карты значение надо распределять по скатам в соответствии с составленной для местности розы ветров. Получить распечатку с ней можно в местной метеослужбе.

С наветренной стороны постройки масса снега будет гораздо меньше, поэтому расчетный показатель умножают на 0,75. С подветренной стороны снежные залежи будут накапливаться, поэтому умножают тут на 1,25. Чаще всего чтобы унифицировать материал для строительства крыши, подветренную часть конструкции сооружают из спаренной доски, а наветренную часть устраивают стропилинами их одинарной доски.

Если неясно, какой из скатов будет с подветренной стороны, а какой наоборот, то лучше оба умножить на 1,25. Запас прочности вовсе не помешает, если не слишком сильно повысит стоимость пиломатериала.

Указанный картой расчетный вес снега еще корректируют в зависимости от крутизны крыши. Со скатов, установленный под углом 60º, снег будет сразу сползать без малейших задержек.

В расчетах для таких крутых крыш поправочный коэффициент не применяют.

Однако при более низком уклоне снег уже сможет задерживаться, поэтому для уклонов 50º применяется добавка в виде коэффициента 0,33, а для 40º она же, но уже 0,66.

Ветровую нагрузку определяют аналогичным образом по соответствующей карте. Корректируют значение в зависимости от климатической специфики области и от высоты дома.

Для расчета несущей способности основных элементов проектируемой стропильной системы требуется найти максимальную нагрузку на них, суммируя временные и постоянные величины. Никто же не будет усиливать крыши перед снежной зимой, хотя на даче лучше бы поставить страховочные вертикальные распорки на чердаке.

Кроме массы снега и давящей силы ветров в вычислениях необходим учет веса всех элементов кровельного пирога: установленной поверх стропилин обрешетки, самой кровли, утеплителя, внутренней подшивки, если она применялась. Весом паро- и гидроизоляционных пленок с мембранами принято пренебрегать.

Сведения о весе материалов указываются изготовителем в технических паспортах. Данные о массе бруска и доски берутся в приближении. Хотя приходящуюся на метр проекции массу обрешетки можно рассчитать, взяв за основу тот факт, что кубометр пиломатериалов весит в среднем 500 – 550 кг/м3, а аналогичный объем ОСП или фанеры от 600 до 650 кг/м3.

Приведенные в СНиПах значения нагрузок обозначены в кг/м2. Однако стропилина воспринимает и держит только ту нагрузку, которая непосредственно давит на этот линейный элемент. Для того чтобы сделать расчет нагрузки именно на стропила, совокупность природных табличных значений нагрузок и массы кровельного пирога умножают на шаг установки стропильных ног.

Приведенное к линейным параметрам значение нагрузки можно уменьшить или увеличить путем изменения шага – расстояния между стропилинами. Корректируя площадь сбора нагрузки, добиваются оптимальных ее значений во имя долгой службы каркаса скатной крыши.

Определение сечения стропилин

Стропильные ноги крыш различной крутизны выполняют неоднозначную работу. На стропила пологих конструкций действует в основном изгибающий момент, на аналоги крутых систем к нему добавляется еще сжимающее усилие. Потому в расчетах сечения стропил обязательно учитывается наклон скатов.

Расчеты для конструкций с уклоном до 30º

На стропильные ноги крыш указанной крутизны действует лишь изгибающее напряжение. Рассчитываются они на максимальный момент изгиба с приложением всех видов нагрузки. Причем временные, т.е. климатические нагрузки используются в вычислениях по максимальным показателям.

У стропилин, имеющих только опоры под обоими собственными краями, точка максимального изгиба будет находиться в самом центре стропильной ноги. Если стропилина уложена на три опоры и составлена из двух простых балок, то моменты максимального изгиба придутся на середины обоих пролетов.

У цельной стропилины на трех опорах максимальный изгиб будет в районе центральной опоры, но т.к. под изгибающимся участком находится опора, то направлен он будет вверх, а не так как у предыдущих случаев вниз.

Для нормальной работы стропильных ног в системе необходимо выполнить два правила:

  • Внутреннее напряжение, сформированное в стропилине при изгибе в результате приложенной к ней нагрузки, обязано быть меньше расчетного значения сопротивления пиломатериала на изгиб.
  • Прогиб стропильной ноги должен быть меньше нормируемого значения прогиба, который определен соотношением L/200, т.е. прогнуться элементу разрешается только на одну двухсотую долю его реальной длины.

Дальнейшие вычисления состоят в последовательном подборе размеров стропильной ноги, которые в результате удовлетворят указанным условиям. Для вычисления сечения имеются две формулы. Одна из них используется для определения высоты доски или бруса по произвольно заданной толщине. Вторая формула применяется для расчета толщины по произвольно заданной высоте.

В вычислениях необязательно пользоваться обеими формулами, достаточно применить только одну. Полученный в итоге расчетов результат проверяют по первому и второму предельному состоянию. Если расчетная величина получился с внушительным запасом по прочности, вводимый в формулу произвольный показатель можно уменьшить, чтобы не переплачивать за материал.

Если расчетная величина момента изгиба получится больше, чем L/200, то произвольное значение увеличивают. Подбор проводится в соответствии со стандартными размерами имеющихся в продаже пиломатериалов. Так подбирают сечение до того момента, пока не будет подсчитан и получен оптимальный вариант.

Рассмотрим простой пример вычислений по формуле b = 6Wh². Предположим, h = 15 см, а W это отношение M/Rизг. Величину М вычислим по формуле g×L2/8, где g – суммарная нагрузка, вертикально направленная на стропильную ногу, а L – это длина пролета, равная 4 м.

Rизг для пиломатериалов из хвойных пород принимаем в соответствии с техническим нормами 130 кг/см2. Допустим, суммарную нагрузку мы рассчитали заранее, и она у нас получилась равной 345 кг/м. Тогда:

M = 345 кг/м × 16м2/8 = 690 кг/м

Чтобы перевести в кг/см делим результат на 100, получаем 0,690 кг/см.

W = 0,690 кг/см/130 кг/см2 = 0,00531 см

B = 6 × 0,00531 см × 152 см = 7,16 см

Округляем результат как положено в большую сторону и получаем, что для устройства стропил с учетом приведенной в примере нагрузки потребуется брус 150×75 мм.

Проверяем результат по обоим состояниям и убеждаемся в том, что нам подходит материал с рассчитанным сейчас сечением. σ = 0,0036; f = 1,39

Для стропильных систем с уклоном свыше 30º

Стропила крыш крутизной более 30º вынуждены сопротивляться не только изгибу, но и силе сжимающей их вдоль собственной оси. В этом случае помимо проверки по описанному выше сопротивлению на изгиб и по величине изгиба нужно рассчитывать стропилины по внутреннему напряжению.

Т.е. действия выполняются в аналогичном порядке, но проверочных расчетов несколько больше. Точно также задается произвольная высота или произвольная толщина пиломатериала, с ее помощью рассчитывается второй параметр сечения, а затем проводится проверка на соответствие вышеперечисленным трем техническим условиям, включая сопротивление сжатию.

При необходимости в усилении несущей способности стропилины вводимые в формулы произвольные значения увеличивают. Если запас прочности достаточно большой и нормативный прогиб ощутимо превышает вычисленное значение, то есть смысл еще раз выполнить расчеты, уменьшив высоту или толщину материала.

Подобрать первоначальные данные для производства расчетов поможет таблица, в которой сведены общепринятые размеры выпускаемых у нас пиломатериалов. Она поможет подобрать сечение и длину стропильных ног для первоначальных вычислений.

Видео о проведении расчетов стропилин

Ролик наглядно демонстрирует принцип выполнения расчетов для элементов стропильной системы:

Выполнение расчетов несущей способности и угла установки стропил – важная часть проектирования каркаса крыши. Процесс непростой, но разобраться в нем необходимо и тем, кто производит расчеты вручную, и тем, кто пользуется расчетной программой. Нужно знать, где брать табличные величины и что дают расчетные значения.

Источник: https://KrovGid.com/proekt/kak-rasschitat-stropila-dlya-kryshi.html

Расчет стропильной системы: нагрузка, сечение, длина, расстояние между стропилами, площадь, угол и другие параметры

Стропильная система — это основная часть крови, которая воспринимает все нагрузки, действующие на крышу, и противостоит им. Чтобы обеспечить качественное функционирование стропил, требуется правильный расчёт параметров.

Как рассчитать стропильную систему

Чтобы сделать расчёт применяемых в стропильной системе материалов своими силами, представлены упрощённые расчётные формулы с целью повысить прочность элементов системы. Данное упрощение увеличивает количество применяемых материалов, но если крыша имеет небольшие габариты, то такое увеличение будет незаметным. Формулы позволяют рассчитать следующие виды крыш:

  • односкатные;
  • двускатные;
  • мансардные.

Срок службы крыши во многом зависит от правильного расчёта

Видео: расчёт стропильной системы

Расчёт нагрузки на стропила двускатной крыши

Для постройки наклонной кровли необходим несущий прочный каркас, к которому будут крепиться все остальные элементы. При разработке проекта выполняется расчёт требуемой длины и площади поперечного сечения стропильного бруса и других частей стропильной системы, на которые будут действовать переменная и постоянная нагрузки.

Для расчёта системы нужно учитывать особенности местного климата

Нагрузки, которые действуют постоянно:

  • масса всех элементов конструкции крыши, таких, как кровельный материал, обрешётка, гидроизоляция, теплоизоляция, внутренняя обшивка чердака или мансарды;
  • масса оборудования и различных предметов, которые крепятся стропилам внутри чердака или мансарды.

Переменные нагрузки:

  • нагрузка, создаваемая ветром и выпавшими осадками;
  • масса работника, который выполняет ремонт или очистку.

К переменным нагрузкам также относятся сейсмическая нагрузка и другие виды особых нагрузок, которые предъявляют дополнительные требования к конструкции кровли.

От ветровой нагрузки зависит угол наклона ската

В большинстве областей Российской Федерации остро стоит проблема снеговой нагрузки — стропильная система должна воспринимать выпавшую массу снега без деформации конструкции (требование наиболее актуально к односкатным крышам).

При уменьшении угла наклона крыши снеговая нагрузка возрастает. Обустройство односкатной крыши с близким к нулевому углом наклона требует установку стропил, имеющих большую площадь поперечного сечения, с маленьким шагом. Также постоянно потребуется выполнять её очистку.

Это относится и к крышам с углом наклона до 25о.

Снеговая нагрузка рассчитывается по формуле: S = Sg × µ, где:

  • Sg — масса снегового покрова на плоской горизонтальной поверхности размером 1 м2. Значение определяется согласно таблицам в СНиП «Стропильные системы» исходя из требуемой местности, в которой ведётся строительство;
  • µ — коэффициент, учитывающий угол наклона ската кровли.

При угле наклона до 250 значение коэффициента составляет 1,0, от 25о до 60о — 0,7, свыше 60о — значение снеговых нагрузок в расчётах не участвует.

Количество осадков влияет на расчёт крыши

Ветровая нагрузка рассчитывается по формуле: W = Wo × k, где:

  • Wo — величина ветровой нагрузки, определяемая согласно табличным значениям, учитывая характер местности, где ведётся строительство;
  • k — коэффициент, который учитывает высоту постройки и характер местности.

При высоте постройки, равной 5 м, значение коэффициентов составляет kА=0,75 и kБ=0,85, 10 м — kА=1 и kБ=0,65, 20 м — kА=1,25 и kБ=0,85.

Сечение стропила на крышу

Рассчитать размер стропильного бруса не составляет труда, если учесть следующий момент — кровля это система треугольников (относится ко всем видам кровли).

Располагая габаритными размерами здания, значением угла наклона крыши или высоты конька и используя теорему Пифагора, определяется размер длины стропил от конькового бруса до наружного края стены. К этому размеру прибавляется длина карниза (в случае, когда стропила выступают за стену).

Иногда карниз делается за счёт монтажа кобылок. Рассчитывая площадь крыши, значения длин кобылок и стропил суммируются, что позволяет вычислить необходимое количество кровельного материала.

Сечение бруса для стропил зависит от многих параметров

Для определения сечения применяемого бруса при возведении любого типа кровли, в соответствии с требуемой длиной стропила, шагом его установки и другими параметрами, лучше всего применять справочники.

Диапазон размеров стропильного бруса лежит в пределах от 40х150 до 100х250 мм. Длина стропила определяется углом наклона и расстоянием между стенами.

Делая расчёт, обязательно учитывайте все нюансы, такие, как влажность, плотность и качество пиломатериалов, если строится кровля из дерева, толщину применяемого проката — если кровля из металла.

Основной принцип расчётов заключается в следующем — величина нагрузки, действующей на крышу, определяет размер сечения бруса. Чем больше сечение, тем прочнее конструкция, но тем больше и её общая масса, а соответственно больше нагрузка на стены и фундамент здания.

Как вычислить длину стропил двускатной крыши

Жёсткость конструкции стропильной системы является обязательным требованием, и её обеспечение исключает прогиб при воздействии нагрузок. Стропила прогибаются в случае допущенных ошибок в расчётах конструкции и величины шага, с которым устанавливается стропильный брус.

В случае, когда данный дефект выявлен после окончания работ, необходимо укрепить конструкцию с помощью подкосов, тем самым вы увеличите её жёсткость. При длине стропильного бруса более 4,5 м применение подкосов является обязательным, так как прогиб будет образовываться в любом случае под воздействием собственного веса бруса.

Данный фактор обязательно принимается во внимание при выполнении расчётов.

Длина стропил зависит от месторасположения их в системе

Определение расстояния между стропилами

Стандартный шаг, с которым выполняется установка стропил в жилом доме, составляет порядка 600–1000 миллиметров. На его величину влияет:

  • расчётная нагрузка;
  • сечение бруса;
  • характеристика кровли;
  • угол наклона крыши;
  • ширина материала утеплителя.

Не рекомендуется искусственно уменьшать или увеличивать шаг стропил

Определение необходимого числа стропил происходит с учётом шага, с которым они будут устанавливаться. Для этого:

  1. Выбирается оптимальный шаг установки.
  2. Длина стены делится на выбранный шаг и к полученному значению прибавляется единица.
  3. Полученное число округляется до целого.
  4. Повторно делится длина стены на полученное число, тем самым определяется нужный шаг монтажа стропил.

Площадь стропильной системы

При вычислении площади двускатной крыши требуется учитывать такие факторы:

  1. Суммарную площадь, которая состоит из площади двух скатов. Исходя из этого определяют площадь одного ската и полученное значение умножают на число 2.
  2. В случае, когда размеры скатов различаются между собой, площадь каждого ската находится индивидуально. Суммарная площадь вычисляется сложением полученных значений для каждого ската.
  3. В случае, когда один из углов ската больше или меньше 90о, для того чтобы определить площадь ската, его «разбивают» на простые фигуры и вычисляют их площадь по отдельности, а затем складывают полученные результаты.
  4. При вычислении площади не учитывается площадь дымоходных труб, окон и вентиляционных каналов.
  5. Учитывается площадь фронтонных и карнизных свесов, парапетов и брандмауэрных стен.

Расчёт стропильной системы зависит от типа крыши

Например, дом имеет длину 9 м и ширину 7 м, стропильный брус имеет длину 4 м, свес карниза — 0,4 м, свес фронтона — 0,6 м.

Значение площади ската находится по формуле S = (Lдд+2×Lфс) × (Lc+Lкс), где:

  • Lдд – длина стены;
  • Lфс – длина свеса фронтона;
  • Lc – длина стропильного бруса;
  • Lкс – длина свеса карниза.

Получается, что площадь ската равна S = (9+2×0,6) × (4+0,4) = 10,2 × 4,4 = 44,9 м2.

Суммарная площадь крыши составляет S = 2 × 44,9 = 89,8 м2.

Размер двускатной кровли рассчитывают с целью определения требуемого количества кровельного материала. С увеличением угла наклона крыши увеличивается и расход материала. Запас должен составлять порядка 10–15%. Он обусловлен укладкой внахлёст. Для определения точного количества материала с учётом наклона скатов лучше всего использовать справочники.

Видео: стропильная система двускатной крыши

Как рассчитать длину стропил вальмовой крыши

Несмотря на разнообразие типов крыш, их конструкция состоит из одних и тех же элементов стропильной системы. Для крыш вальмового типа:

  1. Коньковая опорная балка или коньковый брус — является несущим элементом конструкции кровли вальмового типа. К нему выполняется крепление диагональных стропил. Длина бруса рассчитывается по формуле: Lконька = L — D, где L и D равны длине и ширине сторон здания.
  2. Центральное стропило — брус, который располагается по краю стропильной системы и формирует угол наклона фронтонного ската крыши. Верхним краем упирается в коньковый брус. Длина центральных стропил рассчитывается по формуле: Lцентр.стропил = h3 + d2, где h — высота конька, а d — расстояние от торца конька до стены.

    В вальмовой крыше есть несколько типов стропил

  3. Промежуточные или рядовые стропила — образуют поверхность трапециевидного ската. Устанавливаются согласно рассчитанному шагу. Длина рядовых стропил рассчитывается по аналогичной формуле для центральных стропил.
  4. Диагональные стропила (боковые, рёбра, накосные или угловые стропила) — стропильный брус, который верхним краем упирается в торец конька, а нижней частью — в угол дома. Диагональные стропила обуславливают форму скатов кровли. Длина диагональных стропил рассчитывается по формуле: Lдиаг. стропил=√(L2+d2), где L — длина центрального стропила, а d — расстояние от нижней части стропильного бруса до угла дома.

    Для строительства вальмовой крыши нужно расчитать размеры каждого стропила в отдельности

  5. Нарожники или короткие стропила — короткий стропильный брус, который верхним концом монтируется к диагональному стропилу и формирует угловую часть трапециевидного ската. Длина нарожников рассчитывается по следующим формулам:
    • первый нарожник L1 = 2L/3, где L — длина промежуточного стропила;
    • следующий нарожник L2 = L/3, где L — длина промежуточного стропила.
  6. Расчёт необходимого удлинения стропил для образования свеса карниза выполняется по формуле DL = k/cosα, где k — расстояние от края свеса карниза до стены, cosα – косинус угла наклона кровли.
  7. Угол наклона рядовых стропил определяется по формуле Β = 9о — α, где α – угол наклона ската кровли.

Видео: стропильная система вальмовой крыши

Что влияет на угол наклона стропил

Например, наклон односкатной кровли равен порядка 9–20о, и зависит от:

  • типа кровельного материала;
  • климата в регионе;
  • функциональных свойств строения.

В случае, когда у кровли имеется два, три или четыре ската, то кроме географии строительства влияние будет оказывать и назначение чердачного помещения. Когда назначение чердака будет состоять в хранении различного имущества, то большая высота не требуется, а в случае использования в качестве жилого помещения потребуется оборудование высокой крыши с большим углом наклона. Отсюда и вытекает:

  • внешний вид фасадной части дома;
  • применяемый материал кровли;
  • влияние погодных условий.

Естественно, что для местности с сильным ветром оптимальным выбором будет крыша с малым углом наклона — для снижения ветровой нагрузки на конструкцию.

Это относится и к регионам с жарким климатом, где зачастую количество осадков минимально.

В областях с большим количеством осадков (снег, град, дождь) требуется максимальный угол наклона кровли, который может составлять до 60о. Такая величина угла наклона минимизирует снеговую нагрузку.

Угол наклона ската любой крыши во многом зависит от особенностей климата

В итоге для правильного расчёта угла наклона кровли требуется учитывать все вышеуказанные факторы, поэтому расчёт будет вестись в диапазоне величин от 9о до 60о.

Очень часто результат расчётов показывает, что идеальный угол наклона лежит в пределах от 20о до 40о. При этих значениях допускается применение почти всех типов кровельных материалов — профнастила, металлочерепицы, шифера и прочих.

Но следует учесть, что каждый кровельный материал также имеет свои требования к конструкции крыш.

Не имея в распоряжении размеров стропил нельзя начать возведение крыши. Отнеситесь к данному вопросу со всей серьёзностью. Не ограничивайтесь только расчётами стропильной системы, выбором её конструкции и определением действующих нагрузок. Строительство дома является цельным проектом, в котором все взаимосвязано.

Ни в коем случае не следует рассматривать по отдельности такие элементы, как фундамент, несущая конструкция стен, стропила, кровля. Качественный проект обязательно учитывает все факторы комплексно.

И если планируется строительство жилья для собственных нужд, то лучшим решением станет обращение к специалистам, которые решат насущные вопросы и выполнят проектирование и строительство без ошибок.

Источник: https://roofs.club/kryshi/raschet-stropilnoy-sistemyi.html

Размеры стропильной ситемы и её элементов, как правильно рассчитать

Пусть сооружение стропильной системы кажется довольно простым делом, но оно требует точных математических расчётов. Правильные размеры элементов несущей конструкции не позволят кровле быть хрупкой и спасут хозяина дома от чрезмерных денежных трат.

Расчёт параметров стропильной системы

Стропильную систему образуют не только стропильные ноги. В конструкцию входят мауэрлат, стойки, подкосы и другие элементы, размеры которых строго стандартизированы. Дело в том, что составляющим стропильной системы полагается выдерживать и распределять определённые нагрузки.

Элементы стропильной системы простой двускатной крыши — это стропила, прогон (коньковая доска), стойки, лежень, мауэрлат и подстропильные ноги (подкосы)

Мауэрлат

Мауэрлат — это конструкция из четырёх брусьев, соединяющая кирпичные, бетонные или металлические стены дома с деревянной несущей конструкцией крыши.

Брус мауэрлата должен занимать 1/3 места наверху стены. Оптимальное сечение этого пиломатериала — 10х15 см. Но существуют и другие подходящие варианты, например, 10х10 либо 15х15 см.

Мауэрлат должен быть уже стены, иначе он будет оказывать на стены чрезмерное давление

Идеальная длина бруса для основания под стропильную систему равна длине стены. Соблюсти это условие не всегда получается, поэтому мауэрлат позволительно сооружать и из отрезков полностью или хотя бы примерно одинаковых по длине.

Лежень

Лежень выступает элементом стропильной системы, который находится в лежачем положении и служит основанием для стойки (бабки) несущей конструкции кровли.

В качестве лежня обычно берётся брус такого же сечения, как и мауэрлат. То есть оптимальный размер горизонтального элемента на внутренней несущей стене — 10х10 или 15х15 см.

Размером лежень не отличается от мауэрлата

Коньковый брус

Из-за размеров конькового бруса, в который стропила упираются верхним концом, вес крыши не должен выходить за допустимые рамки. Это значит, что для конька требуется брать брус довольно прочный, но нетяжёлый, чтобы под его давлением не прогнулись другие элементы несущей конструкции кровли.

Наиболее подходящий сосновый пиломатериал для конька крыши — это брус сечением 10х10 см или 20х20 см, как у стоек конструкции.

Коньковый прогон не должен быть толще стойки стропильной системы

Кобылка

Кобылка — это доска, удлиняющая стропило, если оно недопустимо короткое.

При использовании кобылок стропильные ноги обрезают вровень с наружной стеной. А доски, удлиняющие их, подбирают таким образом, чтобы они образовывали необходимый свес крыши и были не толще самих стропил.

По толщине кобылка уступает стропильной ноге

Стойки

Стойка — это то же самое, что и центральная опора. Высоту вертикального бруса в стропильной системе принято находить по формуле h = b1xtgα – 0,05. h — это высота стойки, b1 – половина ширины дома, tgα – тангенс угла между стропилом и мауэрлатом, а 0,05 — это примерная высота коньковой балки в метрах.

Стойки рекомендуется создавать из брусьев сечением 10х10 см.

Главное требование к стойкам — устойчивость, поэтому в качестве них выбирают толстые, как лежень, брусья

Подкосы

Подкосом называется элемент стропильной системы, который под углом не менее 45° (по отношению к горизонтали среза стен) одним концом монтируется на стропиле, а другим — на затяжке, проложенной в направлении от одной стены дома к другой, вплотную к вертикальной стойке.

Длину подкоса определяют по теореме косинусов, то есть по формуле a² = b² + c² — 2 x b x c x cosα для плоского треугольника. a обозначает длину подкоса, b — часть длины стропила, c — половину длины дома, а α – угол, противолежащий стороне a.

Длина подкоса зависит от длины стропила и дома

Ширина и толщина подкосов должна быть идентична этим же размерам у стропильной ноги. Это значительно облегчит задачу по закреплению элемента в каркасе кровли.

Затяжка

Затяжка устанавливается у основания стропильной системы и играет роль балки перекрытия. Длина этого элемента определяется протяжённостью здания, а его сечение не отличается от параметра стропильных ног.

Затяжка по-другому может называться потолочной лагой

Скользящая опора для стропил

Скользящая опора или элемент стропильной системы, позволяющий ей приспосабливаться к изменению конфигурации, должен характеризоваться следующими параметрами:

  • длина — от 10 до 48 см;
  • высота — 9 см;
  • ширина — 3–4 см.

Размер скользящей опоры должен позволять хорошо фиксировать стропила на основании кровли

Доски или брусья для стропил

Размер досок, которые станут стропилами крыши с симметричными скатами, определить нетрудно. В этом поможет формула из теоремы Пифагора c² = a²+ b², где c выступает в качестве необходимой протяжённости стропильной ноги, a обозначает высоту от основания кровли до конькового бруса, а b — ½ часть ширины здания.

По формуле Пифагора можно вычислить как длину стропил, так и высоту стойки

Стропилами обычно становятся доски толщиной от 4 до 6 см.

Минимальный параметр идеален для строений хозяйственного назначения, например, гаражей. А стропильную систему обычных частных домов создают из досок толщиной 5 или 6 см.

Средний показатель ширины главных элементов несущей конструкции кровли — 10–15 см.

На длину стропила влияет степень наклона кровли и протяжённость пространства между стенами, расположенными друг против друга. С увеличением уклона крыши длина стропильной ноги растёт, как и её сечение.

Размер стропил обусловлен величиной зазора между ними

Таблица: соответствие длины стропильной ноги её толщине и шагу

Угол стропила

Величину угла стропила определяют по формуле α = Н / L, где α – это угол наклона кровли, Н — высота конькового бруса, а L — половина пролёта между противоположными стенами дома. Полученное значение переводят в проценты по таблице.

Как будут наклонены стропила, зависит от двух показателей — высоты конька и ширины дома

Таблица: определение угла стропила в процентах

Видео: вычисление размера стропильных ног

Для каждого элемента стропильной системы существуют усреднённые данные о размерах. На них можно ориентироваться, однако лучше высчитывать параметры стоек, подкосов и иных составляющих несущей конструкции кровли в специальных программах на компьютере или с помощью сложных геометрических формул.

Источник: https://stroydom.guru/elementy-krovli-i-kryshi/stropilnye-sistemy/razmeryi-stropil-dlya-kryishi.html

Калькулятор двухскатной крыши и расчёт стропильной системы онлайн

Двускатная крыша – это сложная, большая по площади строительная конструкция, требующая профессионального подхода к проектированию и выполнению работ. Самые большие затраты идут на стройматериалы для стропил, обрешетки, утеплителя, гидроизоляции, кровельного материала. Наш калькулятор двухскатной крыши позволит Вам высчитать количество материала.

Использование калькулятора экономит время для проектирования крыши, и ваши деньги. Окончательный чертеж в 2D формате будет руководством при выполнении работ, а 3D визуализация даст представление о том, как будет выглядеть крыша. Прежде, чем ввести данные в онлайн калькулятор, необходимо иметь представление об элементах крыши.

Параметры стропил

Чтобы произвести расчет стропильной системы двухскатной крыши, нужно учесть:

  • нагрузку крыши;
  • шаг между стропилами.
  • вид кровельного покрытия

Рекомендуемая ширина доски стропил:

  • 100-150 мм при длине пролета не более 5 м, и при дополнительный подпорках.;
  • 150-200 мм при длине пролета более 5 м, при шаге более 1 м, и если угол не большой.

Важно! Расстояние между стропилами двускатной крыши обычно устанавливают 1 м, но при уклоне крыши более 45 градусов шаг стропил можно увеличить до 1,4 м. При пологих крышах шаг делают 0,6-0,8 м.

Стропильные ноги крепятся на мауэрлат, который идет по периметру дома. Для него берется или доска параметрами 50х150 мм, или брус 150х150 мм (для распределения нагрузки)

Параметры обрешетки

Для металлочерепицы создается разреженная обрешетка доской, ширина которой 100мм, в толщина 30 мм. Доска набивается с шагом, который должен соответствовать продольной оси модуля металлочерепицы – 35 см (супермонтеррей).

Для гибкой черепицы обрешетку выполняют с большим шагом, так как поверх её будет укладываться ОСП или фанера сплошным ковром.

Важно! При выборе материалов обращать внимание на показатели влагостойкости и минимальной толщины.

При устройстве теплых крыш между гидроизоляцией и кровлей делается контробрешетка бруском, толщина которого должна быть 30-50мм.

Параметры кровельного покрытия

  • Чтобы выполнить расчет кровли двухскатной крыши, нужно знать размеры кровельного материала и величину нахлестов.
  • Металлочерепицу для жесткой кровли выпускают шириной 118 мм (рабочая 110), а вот длина может быть разной. Завод-изготовитель под заказ может нарезать любую длину.
  • Гибкая черепица для мягкой кровли имеет разные размеры, поэтому нужно смотреть конкретный материал
  • Что касается выбора утеплителя, то для России рекомендуется толщина минимум 100 мм, а правильная будет 150-200мм.

Источник: https://calcstroy.ru/krysha/raschet-dvuskatnoj-kryshi

Расчет стропильной системы к

правила и примеры. Как сделать расчет стропильной системы

Крыша и коробка дома являются двумя взаимодополняющими конструкциями, которые отвечают за прочность, надежность и долговечность здания. Строительство крыши немыслимо без возведения стропильной системы – каркаса из досок и брусьев, на котором закреплены слои кровельного пирога. Чтобы построить прочную крышу, надо правильно рассчитать стропильную систему и подобрать подходящие для нее элементы. Именно это и вызывает большинство сложностей при возведении дома. В этой статье мы постарались затронуть все нюансы, связанные с этой задачей.

Содержание:

Виды нагрузок

Стропильный каркас отвечает за жесткость крыши и равномерно распределяет нагрузку пирога по внешним и внутренним опорам. От правильного расчета зависит прочность и надежность кровли, а также ее способность сопротивляться различным воздействиям. Воздействий этих довольно много, начиная от веса всех материалов, уложенных на стропила, заканчивая внешними факторами.

Для расчета стропильной системы крыши следует учитывать все нагрузки, оказываемые на конструкцию. Только после этого можно найти оптимальные параметры и подобрать элементы, способные выдерживать суммарные воздействия этих нагрузок. Но следует брать во внимание, что схема расчетов каждый раз получается «идеализированной». Это значит, что крыша испытывает равномерно распределенную нагрузку, а на самом деле все происходит совсем не так – где-то снега нападало больше, с какой-то стороны ветер дует сильнее и т.д.

Нагрузки на стропильную систему:

  1. Переменные – снег, ветер, град и другие погодные явления.
  2. Регулярные – вес кровельных материалов и оборудования, установленного на крыше.
  3. Нетипичные (особые) – ураганные ветры, сейсмические толчки.

Все расчеты нагрузок описаны в соответствующих СНиП, поэтому в процессе работы следует постоянно сверяться с утвержденной документацией. То же самое касается определение оптимального угла наклона кровли, шага стропил и выбора материалов. После составления подробной схемы с учетом всех требуемых параметров можно сделать корректировку и приступать к монтажу.

Нагрузка ветра и снега

Ветровая нагрузка может серьезно навредить неправильно сконструированной крыше. То же самое касается большого количества снега, скопившегося на поверхности. Избежать неприятностей поможет верно подобранный угол наклона скатов.

Чтобы определить степень снеговой нагрузки в горизонтальной проекции, воспользуйтесь следующей формулой: S=Sg* µ.

Sg – вес снега на 1 м² площади, а µ — коэффициент зависимости от угла наклона. Так, для крыш с уклоном менее 25° он будет составлять 1,0, для крыш с уклоном от 25° до 60°коэффициент будет равен 0,7, а для очень крутых скатов больше 60° вообще можно не учитывать снеговую нагрузку – снег на такой поверхности просто не сможет удержаться.

Для нахождения ветровой нагрузки используйте другую формулу: W=Wₒ*k.

Wₒ здесь является нормативным значением, которое можно подобрать в зависимости от ветрового района (указано в СНиП), а k – это коэффициент, определяющий зависимость силы ветра от высоты дома и его месторасположения. Проследить эту зависимость можно по таблице ниже:

Если угол наклона кровли составляет больше 30°, в расчет стропильной системы следует внести поправку на ветер. Также для расчета нужно знать постоянное направление ветра в местности, где строится дом.

Ветер в зависимости от угла наклона крыши будет стремится либо приподнять ее, либо опрокинуть, так что в обоих случаях крепить стропила к опорному брусу следует очень прочно. Способы монтажа также будут отличаться в зависимости от воздействия ветра. Но что можно с уверенностью сказать, так чем крыша тяжелее, тем лучше – с тяжелой конструкцией ветер будет не в состоянии справиться.

Приведем пример расчета снеговой и ветровой нагрузки на крышу дома, строящегося в средней полосе России, скажем, в Подмосковье. Следовательно, чтобы посмотреть расчетные значения, понадобится СНиП 2.01.07-85 о «Нагрузках и воздействиях». Угол наклона скатов составляет 22°. Поскольку дом находится в третьем снеговом регионе, расчетная нагрузка для него будет составлять 180 кг/м², а коэффициент зависимости – 1,0. Умножаем друг на друга эти два значения и получаем снеговую нагрузку в 180 кг/м². Если коэффициент скатной кровли будет меньше, скажем, 0,7, то и нагрузка уменьшится до 126 кг/м².

Важный момент: В случае образования снежного сугроба на крыше нагрузка увеличивается до 400-500 кг/м².

Что касается ветровой нагрузки для нашего дома в Подмосковье, то для этого региона она составляет 32 кг/м².Допустим, площадь дома 10 м², тогда вычислить степень воздействия ветра очень просто: 32*0,65=20,8 кг/м².

Нагрузка крыши

Рассчитывать стропильную систему крыши нужно с учетом всех материалов, которые вы будете укладывать на нее: гидроизоляцию, утеплитель, элементы вентиляционной системы, кровельный материал, оборудование и т.д. Выбор кровельного материала зависит от угла наклона скатов и напрямую влияет на требования к прочности составляющих стропильной системы.

Вес распространенных кровельных материалов на 1 м²:

  • керамочерепица – 35-50 кг;
  • цементная черепица – 40-50 кг;
  • шифер – 10-15 кг;
  • битумная черепица – 8-12 кг;
  • битумный шифер – 4-6 кг;
  • профнастил и металлочерепица – 4-5 кг.

Черновой настил для слоев кровельного пирога весит от 18 до 20 кг/ м², обрешетка – от 8 до 10 кг/ м², а вся стропильная система дает нагрузку от 15 до 20 кг/ м². Суммируйте все эти данные и вы поймете, что на стены дома и фундамент крыша оказывает нешуточное давление. К слову, если дом построен на облегченном фундаменте или имеет некрепкие стены, то о крыше, покрытой, например, керамической или цементной черепицей не может быть и речи.

Полезный совет: Многие продавцы кровельных материалов делают акцент на легкости изделий, дескать, это позволит сэкономить на стропильной системе, построив ее из более тонких и дешевых элементов. Но мы с вами уже знаем, что чем крыша тяжелее, тем сложнее ветру ее опрокинуть или оторвать, поэтому не стоит слепо верить подобным доводам.

Сечение стропил

Как вы уже поняли, выбирать сечение (толщину) стропил следует в зависимости от нагрузки на крышу, точнее, суммы всех перечисленных выше нагрузок. При строительстве двускатной или четырехскатной кровли используется множество различных элементов. Длина стандартных стропил может варьироваться от 4,5 до 6 м. При необходимости их можно укоротить или нарастить.

Прежде чем выбрать сечение бруса, нужно знать длину стропил, шаг их установки и нагрузку на них. В таблице ниже приведены необходимые данные для расчета кровельной системы. Однако эти значения подходят лишь для Московской области и учитывают климатические особенности именно этого региона.

Но «скелет» крыши состоит не только из стропил – в нем есть опорный брус (мауэрлат), подкосы, ригели и много других элементов. Ниже представлены рекомендуемые сечения для каждого из них:

  • мауэрлат самый мощный элемент системы, поэтому для него нужно большое сечение в 100х100 мм, 100х150 мм или 150х150 мм;
  • прогоны также выполняют поддерживающую функцию и должны быть прочными – 100х100 мм, 100х150 мм либо 100х200 мм;
  • ендовы и диагональные стропильные ноги – 100х200 мм;
  • подкосы и ригели – 100х150 мм или 150х150 мм;
  • подшивочные доски – 25х100 мм;
  • затяжки – 50х150 мм.

Когда выбрана длина, толщина и шаг расположения стропил, можно определить их количество. Делать это нужно, ориентируясь на длину дома. В процессе проектирования также надо делать расчет на прогиб, соотнося нагрузку на стропила и возможный прогиб деревянных элементов под ней. Для стропильной системы мансардной крыши прогиб не будет превышать 1/250 часть от длины сегмента, на который оказывается давление.

Иными словами, пятиметровые стропила прогнутся максимум на 2 см. При увеличении длины или нагрузки крыша может деформироваться.

Рекомендации для выбора брусьев на стропила:

  1. На 1 погонном метре материала не должно быть больше 3 сучков длиной до 3 см (если сучок больше, то стропило будет слабым).
  2. Допустимо присутствие несквозных трещин, но только если они не превышают половины длины всего бруса.
  3. Древесина должна быть хорошо просушенной. Допустимый уровень влажности брусьев составляет 18% и меньше. Если построить стропильную систему из сырых элементов, очень скоро она деформируется.

Полезный совет: Перед монтажом конструкции стропильной системы обязательно обработайте каждый деревянный элемент антисептическим и антипиренным средством. Делать это надо до установки, а не после.

Расчет стропильной системы

Расчет стропильной системы будет зависеть, в первую очередь, от конструктивных особенностей крыши и ее типа: односкатная, двускатная, вальмовая и т.д. В этой главе мы рассмотрим особенности расчета для самых распространенных видов крыш.

Односкатная крыша

Односкатная крыша очень проста в исполнении и сделать для нее расчет стропил не составит особого труда. Однако самым большим недостатком такой конструкции является ее сильная подверженность снеговым и ветровым нагрузкам. На большой пологой площади будет постоянно собираться много снега, поэтому стропильная система должна быть достаточно мощной. Особенно это касается тех случаев, если вы не сможете регулярно чистить крышу. Быть может, в подобной ситуации стоит задуматься о выборе другого вида крыши, например, самой простой двускатной. Небольшой угол наклона односкатной крыши требует не только мощного каркаса, но также использования усиленной гидроизоляции из-за высокого риска возникновения протечек.

Чтобы сделать расчет стропильной системы односкатной крыши, сперва нужно задать угол наклона (от чего он зависит, мы уже выяснили в предыдущей главе). Для создания необходимого уклона следует организовать правильный перепад по высоте – расположить опоры соответствующей высоты.

Длина перекрываемого пролета определяет сложность стропильной системы:

  1. Для перекрытия небольшой длины можно использовать только стропильные ноги.
  2. При длине пролета от 4,5 до 6 м необходимо установить подкосы в нижней части ската.
  3. Чтобы закрыть пролет длиннее 6,5 м, понадобятся вертикальные стойки – они не дадут крыше прогнуться под нагрузками.

Приведем пример расчета каркаса односкатной крыши для гаража площадью 4х5 м с уклоном 25°. Сначала надо узнать высоту крыши, чтобы понять, настолько поднимать одну из несущих стен гаража. Для этого умножим тангенс уклона на длину боковой стены: tg25*5=2.35 м.

Чтобы найти длину стропильной ноги, делим высоту крыши на синус уклона и к полученному результату прибавляем двойную длину свеса: 2,35/sin25+2*0,5=6,6 м.

Расчет стропильной системы двухскатной крыши

Двускатная крыша пользуется популярностью на протяжении тысячелетий, и даже сегодня при обилии дизайнерских решений многие предпочитают этот классический вариант. Объяснить это можно не только эстетической привлекательностью, но также простотой возведения и практичностью конструкции.

Уклон стропильной системы двухскатной крыши может варьироваться от 5° до 90° в зависимости от климатической зоны и регулярных нагрузок. Конечно, дизайнерские предпочтения здесь также играют не последнюю роль. Если вы строите дом в благоприятной климатической зоне, где нет сильных ветров и снегопадов, но хотите украсить жилище остроконечной крышей, никто не может запретить вам это сделать. Самым распространенным вариантом являются крыши с уклоном от 35° до 45°. Они не загораживают обзор, лаконично вписывают дом в природный ландшафт и оставляют достаточно свободного пространства на чердаке.

Устройство стропильной системы такой кровли отличается в плане использования опоры для стропил. Они могут быть висячими или наслонными. Первые используют в тех случаях, если расстояние между опорами не превышает 6-6,5 м. Наслонные элементы актуальны для сооружений, в которых есть несущая центральная стена или внутренние столбчатые опоры.

После определения суммированной нагрузки на 1 м² системы (ветер, снег, вес кровельного пирога и т.д.), можно определить сечение стропил. Чтобы облегчить задачу, разбейте крышу на несколько геометрических фигур, например, на 2 трапеции скатов. Вычислите нагрузку для каждого из них и сложите результаты. Тот же принцип можно использовать для расчета стропильной системы четырехскатной крыши.

Четырехскатная крыша

Конструкции четырехскатных крыш бывают нескольких видов, но самыми популярными являются шатровые и вальмовые. Шатровые крыши состоят из 4 треугольников, верхние углы которых сводятся в один коньковый узел. Кровли вальмового типа представляют собой 2 трапеции, соединенных коньковой балкой по верхним граням и 2 треугольника по бокам. Есть также ломаные кровли со сложным строением, но рассчитать для них стропильный каркас можно только при наличии большого опыта и квалификации.

Вальмовая кровля лучше всего подходит для жилых домов, поскольку позволяет создать довольно просторное чердачное помещение. Его можно утеплить и превратить в жилую комнату: спальню, кабинет или мастерскую. Однако расчет вальмовой стропильной системы требует терпения и времени.

Специальные таблицы существенно облегчают задачу. Так, на изображении ниже показаны коэффициенты зависимости длины угловых и промежуточных стропил от угла наклона скатов.

При помощи таблиц зависимости сечения, ветровой нагрузки, массы кровельного материала можно довольно быстро собрать всю необходимую информацию для вашего проекта. Геометрические параметры и площадь крыши измеряются квадратными метрами.

Если вы не имеете опыта или не уверены в своих математических способностях, лучше воспользоваться онлайн калькулятором или одной из специальных программ для расчета стропильной системы. В последнем случае вам надо лишь ввести нужные данные, а программа сделает все вычисления и сгенерирует результат. Ошибки таким образом сводятся к минимуму. Ниже вы найдете видео о расчете стропильной системы с помощью одной из таких программ:

Высота крыши (h) и дистанция между центром основания и ближайшим ее краем (b\2) соответствует тангенсу уклона (tg α). Так, зная угол наклона ската, можно найти высоту по формуле: h=(b*tg α)\2.

Зная косинус угла наклона, можно найти и длину боковых стропил (e): e=b\(2 cos α).

Для нахождения длины вальмовых стропил (d) пригодится теорема Пифагора:

Учитывайте, что диагональные стропила длиннее обычных и на них будут опираться более короткие элементы, поэтому важно обеспечить их прочность и жесткость. Это можно сделать, выбрав более твердую древесину и проведя правильное наращивание брусьев при необходимости.

Расчеты и проектирование являются колоссально трудоемкой и ответственной задачей, будь то стропильная система двухскатной простой крыши, вальмовой или шатровой. Чтобы правильно выполнить задачу, необходимо четко понимать, для чего нужен каждый элемент и как «чувствует» себя крыша в процессе эксплуатации. Если вы сомневаетесь, что справитесь, лучше потренироваться на создании стропил для гаража или беседки, а потом переходить к жилому дому. Также можно воспользоваться услугами специалистов – экономить на строительстве можно, но только не за счет проектирования. Чтобы облегчить вам задачу, мы подготовили несколько схем стропильных систем.

Стропильная система: фото

Похожие статьи

Закон Гесса и расчеты изменения энтальпии

ЗАКОН HESS И РАСЧЕТ ИЗМЕНЕНИЯ ЭНТАЛЬПИИ

 

Эта страница объясняет закон Гесса и использует его для выполнения некоторых простых расчетов изменения энтальпии, включающих изменения энтальпии реакции, образования и горения.

 

Закон Гесса

Закон Гесса

Закон Гесса — самый важный закон в этой части химии.Из него следует большинство расчетов. Это говорит. . .

Изменение энтальпии, сопровождающее химическое изменение, не зависит от пути, по которому происходит химическое изменение.
 

Объяснение закона Гесса

Закон Гесса гласит, что если вы конвертируете реагенты A в продукты B, общее изменение энтальпии будет точно таким же, независимо от того, делаете ли вы это за один шаг, два шага или сколько угодно шагов.

Если вы посмотрите на изменение на диаграмме энтальпии, это на самом деле довольно очевидно.

Здесь показаны изменения энтальпии для экзотермической реакции с использованием двух разных способов перехода от реагентов A к продуктам B. В одном случае вы выполняете прямое преобразование; в другом — вы используете двухэтапный процесс с участием некоторых промежуточных продуктов.

В любом случае общее изменение энтальпии должно быть одинаковым, потому что оно определяется относительным положением реагентов и продуктов на диаграмме энтальпии.

Если вы перейдете через промежуточные соединения, вам для начала придется подвести немного дополнительной тепловой энергии, но вы получите ее снова на втором этапе последовательности реакций.

Сколько бы стадий ни протекала реакция, в конечном итоге общее изменение энтальпии будет таким же, потому что положения реагентов и продуктов на диаграмме энтальпии всегда будут одинаковыми.


Примечание: Возможно, меня сбивает с толку то, что я переключаюсь между терминами энтальпия и энергия. Изменение энтальпии — это просто особая мера изменения энергии. Вы помните, что изменение энтальпии — это тепло, выделяющееся или поглощаемое во время реакции, происходящей при постоянном давлении.

Я обозначил вертикальную шкалу на этой конкретной диаграмме как энтальпию, а не как энергию, потому что мы конкретно думаем об изменениях энтальпии. Я мог бы просто использовать более общий термин «энергия», но я предпочитаю быть точным.


Вы можете выполнять вычисления, представив их в виде диаграмм энтальпии, как указано выше, но есть гораздо более простой способ сделать это, практически не требующий размышлений.

Вы можете представить диаграмму выше как:

Закон Гесса гласит, что общее изменение энтальпии в этих двух маршрутах будет одинаковым.Это означает, что если вам уже известны два значения изменения энтальпии для трех отдельных реакций, показанных на этой диаграмме (три черные стрелки), вы можете легко вычислить третью — как вы увидите ниже.

Большим преимуществом этого способа является то, что вам не нужно беспокоиться об относительном расположении всего на диаграмме энтальпии. Совершенно неважно, является ли конкретное изменение энтальпии положительным или отрицательным.

Предупреждения!

Хотя большинство вычислений, с которыми вы столкнетесь, впишутся в треугольную диаграмму, подобную приведенной выше, вы также можете столкнуться с другими немного более сложными случаями, требующими большего количества шагов.Это не усложняет задачу!

Вам нужно внимательно выбрать два маршрута. Шаблон , а не всегда будет выглядеть так, как показано выше. Вы увидите это в примерах ниже.

 

Расчет изменения энтальпии с использованием циклов закона Гесса

Я могу дать здесь только краткое введение, потому что это подробно описано в моей книге расчетов по химии.

 

Расчет изменения энтальпии образования из изменений энтальпии горения

Если вы читали предыдущую страницу в этом разделе, вы, возможно, помните, что я упоминал, что стандартное изменение энтальпии образования бензола невозможно измерить напрямую.Это потому, что углерод и водород не вступают в реакцию с образованием бензола.


Важно: Если вы не знаете (не слишком много об этом задумываясь) точно, что подразумевается под стандартным изменением энтальпии образования или горения, вы, , должны разобраться с этим сейчас. Перечитайте страницу об определениях изменения энтальпии, прежде чем идти дальше — и изучите их !


Стандартные изменения энтальпии сгорания, ΔH ° c , относительно легко измерить.Для бензола, углерода и водорода это:

ΔH ° c (кДж моль -1 )
C 6 H 6 (л) -3267
C (с)

-394
H 2 (г) -286

Сначала вы должны разработать свой цикл.

  • Запишите изменение энтальпии, которое вы хотите найти, в виде простого горизонтального уравнения и напишите ΔH над стрелкой.(В диаграммах такого типа мы часто пропускаем стандартный символ, чтобы не загромождать.)

  • Затем поместите остальную информацию, которая у вас есть, на ту же диаграмму, чтобы создать цикл закона Гесса, записывая известные изменения энтальпии поверх стрелок для каждого из других изменений.

  • Наконец, найдите на диаграмме два маршрута, всегда идущих в соответствии с потоком различных стрелок. У вас никогда не должно быть ни одной из стрелок маршрута, идущих в направлении, противоположном одной из стрелок уравнения под ней.

В данном случае мы пытаемся найти стандартное изменение энтальпии образования бензола, так что уравнение идет горизонтально.

 

Вы заметите, что я не потрудился включить кислород, в котором сжигаются различные предметы. Количество кислорода не критично, потому что вы все равно просто используете его избыток, и его включение действительно сбивает диаграмму.

Почему я нарисовал рамкой углекислый газ и воду в нижней части цикла? Я делаю это, если не могу заставить все стрелки указывать именно на то, что нужно.В этом случае нет очевидного способа заставить стрелку от бензола указывать на и углекислый газ, и воду. Рисовать коробку не обязательно — я просто считаю, что это помогает мне легче увидеть, что происходит.

Обратите внимание, что вам, возможно, придется умножить используемые вами числа. Например, стандартные изменения энтальпии сгорания начинаются с 1 моля вещества, которое вы сжигаете. В этом случае уравнения требуют, чтобы вы сожгли 6 моль углерода и 3 моля молекул водорода.Забыть об этом — вероятно, самая распространенная ошибка, которую вы, вероятно, совершите.

Как были выбраны эти два маршрута? Помните, что вы должны плыть по течению стрел. Выберите начальную точку как угол, из которого выходят только стрелки. Выберите конечную точку как угол, в который прибывают только стрелки.

Теперь сделаем расчет:

Закон Гесса гласит, что изменения энтальпии на двух маршрутах одинаковы. Это означает, что:

ΔH — 3267 = 6 (-394) + 3 (-286)

Перестановка и решение:

ΔH = 3267 + 6 (-394) + 3 (-286)

ΔH = +45 кДж моль -1


Примечание: Если у вас хорошая память, вы, возможно, помните, что я дал цифру +49 кДж моль -1 для стандартного изменения энтальпии образования бензола на более ранней странице этого раздела.Так почему этот ответ отличается?

Основная проблема здесь в том, что я принял значения энтальпий сгорания водорода и углерода до трех значащих цифр (обычно это делается в расчетах на этом уровне). Это вносит небольшие ошибки, если вы просто берете каждую цифру один раз. Однако здесь вы умножаете ошибку в значении углерода на 6, а ошибку в значении водорода на 3. Если вам интересно, вы можете переработать расчет, используя значение -393,5 для углерода и -285.8 для водорода. Это дает ответ +48,6.

Так почему я вообще не использовал более точные значения? Потому что я хотел проиллюстрировать эту проблему! Ответы, которые вы получаете на подобные вопросы, часто немного нечеткие. Причина обычно кроется либо в ошибках округления (как в этом случае), либо в том, что данные могли быть получены из другого источника или источников. Попытка получить согласованные данные может быть немного кошмаром.


Расчет изменения энтальпии реакции по изменениям энтальпии образования

Это наиболее частое использование простых циклов закона Гесса, с которым вы, вероятно, столкнетесь.

В этом случае мы собираемся рассчитать изменение энтальпии для реакции между этеном и газами хлористого водорода, чтобы получить газообразный хлорэтан, исходя из стандартных значений энтальпии образования, указанных в таблице. Если вы никогда раньше не сталкивались с такой реакцией, это не имеет значения.

ΔH ° f (кДж моль -1 )
C 2 H 4 (г) +52,2
HCl (г)

-92.3
C 2 H 5 Cl (г) -109

Примечание: Я не очень доволен стоимостью хлорэтана! Источники данных, которые я обычно использую, дают широкий диапазон значений. Я выбрал среднее значение из электронной книги по химии NIST. Эта неопределенность никоим образом не влияет на то, как вы проводите вычисления, но ответ может быть не совсем правильным — не цитируйте его, как если бы было правильным .


В приведенном ниже цикле эта реакция написана горизонтально, а значения энтальпии образования добавлены для завершения цикла.

 

Опять же, обратите внимание на рамку, нарисованную вокруг элементов внизу, потому что невозможно аккуратно соединить все отдельные элементы с соединениями, которые они образуют. Будьте осторожны, подсчитав все атомы, которые вам нужно использовать, и убедитесь, что они записаны так, как они встречаются в элементах в их стандартном состоянии.Вы не должны, например, записывать водород как 5H (г), потому что стандартное состояние для водорода — H 2 .


Примечание: По правде говоря, если я сам вычисляю этот тип энтальпии (никто не смотрит!), Я обычно пишу слово «элементы» в нижнем поле, чтобы не беспокоиться о том, сколько именно Все, что мне нужно. Однако я бы опасался делать это на экзамене.


А теперь расчет.Просто запишите все изменения энтальпии, составляющие два маршрута, и приравняйте их.

+52,2 — 92,3 + ΔH = -109

Перестановка и решение:

ΔH = -52,2 + 92,3 — 109

ΔH = -68,9 кДж моль -1


Примечание: Я боюсь, что это все, что я чувствую, я могу дать вам по этой теме, не рискуя продавать мою книгу или не нарушая контракта с моими издателями. К сожалению, вам недостаточно быть уверенным в том, что вы сможете каждый раз производить эти вычисления.Помимо всего прочего, вам нужно много практики.

Я говорил об этом более мягко в книге с множеством примеров. Если бы вы решили проработать главу 5 книги, вы были бы уверены, что сможете выполнить любой расчет химической энергии, который вам дали.

Очевидно, я предвзято, но я настоятельно рекомендую вам либо купить книгу, либо получить копию в вашей школе, колледже или местной библиотеке. Не верьте мне на слово — читайте отзывы на сайте Amazon.


 

Вопросы для проверки вашего понимания

Если это первый набор вопросов, которые вы задали, прочтите вводную страницу перед тем, как начать. Вам нужно будет использовать КНОПКУ «НАЗАД» в браузере, чтобы потом вернуться сюда.

вопросов по закону Гесса

ответов

 

Куда бы вы сейчас хотели пойти?

В меню химической энергетики.. .

В меню «Физическая химия». . .

В главное меню. . .

 

© Джим Кларк, 2010 (изменено в мае 2013 г.)

Все, что вы хотели знать о предварительных расчетах обследования

Вы видели мост для взвешивания грузовиков? Вы знаете, как это работает?

Он взвешивает собственный вес грузовика, а затем вес груза. Разница заключается в весе груза на этом грузовике.

При осмотре скважины используется аналогичный принцип для измерения груза, загруженного на борт судов.

С помощью драфта мы измеряем начальный вес (водоизмещение) судна и измеряем окончательный вес (водоизмещение) судна после погрузки. Разница плюс все вынутые веса (например, балласт) и будет загруженным грузом.

Единственная разница между измерением веса грузовика и корабля состоит в том, что в дальнейшем расчет не так прост.

Итак, в этом посте я расскажу о том, как приступить к измерению количества груза с помощью драфта.

1. Почему драфта опроса?

На танкерах легко измерить количество загруженного груза. Мы знаем плотность груза и знаем объем. Легче узнать вес загруженного груза.

Но с такими грузами, как уголь, мы не можем измерить вес, просто измерив высоту трюма, в который загружен груз.

Это потому, что, в отличие от жидкостей, твердые грузы не принимают форму трюма.

Расчет загруженного груза с осадкой — наиболее подходящий способ.

Но не только твердые грузы. Иногда приходится измерять количество жидкостей в грузе при осадке. Одним из таких грузов являются молласы, загружаемые на танкеры-химовозы.

В этом грузе есть воздух, поэтому плотность этого груза неодинакова. Расчет веса других жидкостей даст неверное количество. Черновик опроса — тоже ответ на этот вопрос.

Итак, давайте посмотрим, как нам нужно проводить предварительное обследование.

2. Основы предварительного опроса

При расчетах драфта все, что мы хотим знать, — это разница в весе прибытия (водоизмещение) судна и отходе (водоизмещение).

Допустим, у нас есть эти цифры

По прибытии

Водоизмещение: 20000 т

Груз: 0

Балласт: 6000 т

Другой вес: 1000 т

Выезд

Водоизмещение: 50000 т

Груз: ???

Балласт: 500 т

Другой вес: 1000 т

Разница водоизмещения составляет 30000 т.Из них было снято 5500 т балласта и загружен груз в порту.

Знать количество загруженного груза — 35500 т. — несложный расчет.

В этом простом вычислении нетрудно узнать балласт и топливо на борту. Что нам нужно знать, так это водоизмещение судна по прибытии и после завершения погрузки.

Как только мы это узнаем, мы сможем узнать количество груза. Самый простой способ рассчитать водоизмещение судна — это записать осадку судна и найти водоизмещение для этой осадки в буклете по дифференту и остойчивости.

Это самый простой способ сказать это, но есть несколько исправлений, которые мы обсудим.

3. Осадка судна

Для судна две осадки.

  • Осадка на носовом и кормовом перпендикулярах и на миделе этих двух. Это проект, который указан в буклете по дифференту и остойчивости судна.
  • Осадки при фактической осадке Маркировка нанесена на борт судна.

Итак, чтобы получить смещение из буклета по дифференту и устойчивости, мы должны получить уклоны по перпендикулярам.

То, что мы получим от визуальных чертежей, в большинстве случаев не будет перпендикулярами.

Допустим, у нас есть следующий визуальный черновик. При расчете чернового обследования мы называем визуальные черновики «Явными черновиками».

Итак, допустим, что среднее значение обеих сторон кажущейся осадки равно

.

Вперед = 6,43 м

На корме = 8,53 м

Мидель = 7,42 м

Кажущийся обрез = 2,1 м

Как я уже сказал, нам нужно эти сквозняки довести до перпендикуляров.

Формула исправления черновиков визуальных элементов для приведения его к перпендикулярам:

Вы найдете эти расстояния в Книге дифферента и остойчивости корабля. Взгляните на эти исправления для одного из кораблей.

Как видим, расстояние от носового перпендикуляра до отметки осадки вперед составляет 9,95 метра.

Таким образом, поправка к прямой осадке будет 9,95 x 2,10 / 155. Это будет равно 0,135 метра.Поскольку носовой перпендикуляр находится впереди маркирования осадки, и у нас есть дифферент кормы, эта поправка будет отрицательной.

То же самое для видимого дифферента 2,10 метра, поправка на кажущуюся осадку составляет

Таким образом, осадки на переднем и заднем перпендикулярах и на миделе будут соответственно 6,295 м / 8,653 м / 7,451 м.

В идеале теперь мы должны взять осадку на миделе (в данном случае 7,451 м) и найти смещение в буклете по дифференту и остойчивости.

Но в этих черновиках могут быть ошибки, и мы должны убедиться, что черновик правильный.Эта ошибка могла быть

  • Ошибки при чтении нескольких визуальных черновиков
  • Ошибки из-за провисания или провисания судна

Чтобы свести к минимуму эти ошибки, мы дорабатываем проект судна, используя средства

Fst example

Fst example
Рабочий пример расчета F-статистики по генотипическим данным:


Вернуться на главную страницу индекса

Перейти к лекции 35
Перейти к лекции 36

Генотип
AA Aa а.о.
Подпопуляция 1 125 250 125
Подпопуляция 2

50 30 20
Субпопуляция 3

100 500 400

N (количество генотипированных особей.В
сумма
каждой строки в таблице выше):

Население 1: 500
Население 2: 100
Население 3: 1000

Помните, что количество аллелей ДВАЖДЫ
количество генотипов.

Шаг 1. Вычислить ген (аллель)
частоты
:

Каждая гомозигота будет иметь два аллеля,
каждый
гетерозигота будет иметь один аллель. Обратите внимание, что знаменатель будет
быть вдвое больше N i (вдвое больше аллелей, чем индивидов).

Уравнения FST.1

Шаг 2. Рассчитайте ожидаемое количество генотипов.
при равновесии Харди-Вайнберга
, а затем рассчитать избыток
или дефицит гомозигот в каждой субпопуляции
.

Поп.
1
Ожидается AA = 500 * 0,5 2
= 125 (= наблюдается)

Ожидается Aa =
500 * 2 * 0.5 * 0,5
= 250 (= наблюдается)

Ожидается а.о. = 500 * 0,5 2
= 125 (= наблюдается)

Поп.
2
Ожидается AA = 100 * 0,65 2
= 42,25 (наблюдаемое имеет превышение 7,75)

Ожидается Aa =
100 * 2 * 0,65 * 0,35
= 45,5 (наблюдается дефицит 15.5)

Ожидается а.о. = 100 * 0,35 2
= 12,25 (наблюдаемое имеет превышение 7,75)

Обратите внимание, что сумма двух типов гомозиготного избытка
знак равно
количество гетерозиготной недостаточности.
Эти числа должны уравновесить (это математическое
необходимость,
учитывая, что p + q = 1.

Поп.
3
Ожидается AA = 1000 * 0,35 2
= 122,5 (наблюдается дефицит 22,5)

Ожидается Aa =
1000 * 2 * 0,65 * 0,35
= 455 (наблюдаемое превышает 45)

Ожидаемое значение а.о. = 1000 * 0,35 2
= 422,5 (наблюдается дефицит 22.5)

Краткое описание дефицита или избытка гомозигот
родственник
к HWE
:

Поп. 1. Наблюдается =
Ожидается:
идеально подходит
Pop. 2. Превышение 15,5
гомозиготы: инбридинг
Поп. 3. Дефицит 45
гомозиготы: беспородные или испытывающие эффект Валунда (изолировать
нарушение).

Шаг 3. Вычислить локальные наблюдаемые гетерозиготности
каждой субпопуляции (назовем их H obs s , где s
нижний индекс относится к s th из n популяций
— 3 в этом примере).Здесь мы насчитываем генотипов :

H набл. 1 = 250 /
500 = 0,5

H набл.2 = 30 /
100
= 0,3

H набл.3 = 500 /
1000

= 0,5

Шаг 4. Рассчитайте местную ожидаемую гетерозиготность или разнообразие генов каждой субпопуляции (модифицированная версия уравнения 35.1):

Уравнения FST.2

(с двумя аллелями было бы легче использовать 2 pq , чем использовать формат суммирования уравнения 33.1)

Обозначение :
Обратите внимание, что здесь я использую p 1 и q 1 (где нижние индексы относятся к подгруппам с 1 по 3).
Нам нужно было бы использовать несколько индексов, если бы мы использовали обозначение уравнения 35.1, где аллели p i i
относятся к аллелям с 1 по k ).Действительно, при реальном многокомпонентном размножении
data, у нас будет тройное суммирование и три нижних индекса; один для аллелей ( i = от 1 до k ), один для локусов (
l = от 1 до м ) и один для субпопуляций (от с = от 1 до n ).

Шаг 5. Вычислите коэффициент местного инбридинга для каждой субпопуляции (то же, что и в уравнении 35.4, за исключением того, что мы
индексы для субпопуляций):

где с ( с = от 1 до 3) относится к субпопуляции
Eqn FST.3

F 1 = (0,5 — 0,5) / 0,5 = 0

F 2 = (0,455 — 0,3) / 0,455 = 0,341

[положительный результат F означает меньшее количество гетерозигот, чем ожидалось, указывает на инбридинг]

Ф 3 = (0,455 — 0,5) / 0,455 = -0,099

[отрицательный F означает больше гетерозигот, чем ожидалось, означает избыток аутбридинга]

Шаг 6.Вычислить
(p-bar
, частота аллеля A ) по всей популяции.


[ Обратите внимание, что если мы
было больше аллелей, мы могли бы объединить это и Шаг 7 как единый «глобальный
частоты генов «шагают», или имеют по одной для каждой частоты аллеля
].

{метод расщепления генотипа}

или (дает тот же ответ)

{с использованием значений Eqn FST.1 для p s }

Обратите внимание, что мы взвешиваем по численности населения

Шаг 7.Рассчитать
( q-bar , частота аллеля a ) в общей популяции

Чек :
p-bar + q-bar = 0,4156 + 0,5844 = 1,0 (в соответствии с уравнением 31.1).

Проверка не гарантирует, что наш результат верен, но если они не равны единице, мы знаем, что
просчитался.

Шаг 8. Рассчитайте глобальные индексы гетерозиготности (по индивидуумам,
Субпопуляции и общая численность населения)

Обратите внимание, что в первых двух вычислениях используется средневзвешенное значение значений во всем наборе подгрупп.

H I на основе наблюдалось
гетерозиготности у особей в субпопуляциях

Формула FST.4

H S на основе ожидаемых гетерозиготностей
в субпопуляциях

Формула FST.5

H T на основе ожидаемых гетерозиготностей для
общая общая популяция (с использованием глобальных частот аллелей и модифицированной формы уравнения 35.1):

Формула FST.6

или мы можем рассчитать это как 2 * p -бар * q -бар
= 2 * 0,4156 * 0,5844 = 0,4858

Шаг 9. РАССЧИТАТЬ ГЛОБАЛЬНУЮ F -СТАТИСТИКУ:

Сравните и сопоставьте глобальный F IS ниже с «коэффициентом местного инбридинга» F s из
Шаг 5.
Здесь мы используем средневзвешенное значение индивидуальных гетерозиготностей по всем субпопуляциям.

И F IS , и F s , однако, основаны на наблюдаемых гетерозиготностях ,

, тогда как F ST и F IT основаны
на ожидается гетерозиготностей.

Eqn FST.7

Формула FST.8

Формула FST.9

Примечание : индексы I, S и T не суммируются
индексы.
Они просто указывают на уровень нашего анализа. Аналогично, s
на F s на шаге 5 или на p s in
Шаг
1 ( s там подразумевается) просто скажите нам, что мы имеем в виду
к.
Напротив, индексы для уравнений 35.1 и 35.2 используются в
подведения итогов
и меняемся по мере того, как мы прорабатываем части расчета.

Шаг 10. Наконец, нарисуйте немного
выводы
о генетической структуре популяции и ее субпопуляций.

1) Один из
возможный
HWE выводы, которые мы могли сделать:

Поп. 1 соответствует
с участием
HWE (результаты Шага 2)

2) Два из возможных
«местный инбридинг»
выводы, которые мы могли сделать из шага 5:

Поп.2 инбредный
(полученные результаты
шага 5) и
Pop. 3 может иметь дезассортативный
вязка
или испытываете эффект Валунда (больше гетерозигот, чем ожидалось).

3) Заключение по
в общем и целом
степень генетической дифференциации ( F ST )

Подразделение
население,
возможно, из-за генетического дрейфа,
составляет ок. 3,4%
общее
генетическая вариация
(результат уравнения FST.8 Ф СТ
расчет
в Шаге 9),

4) Нет избытка или недостатка
гетерозигот
по населению ( F IT
почти ноль).

Вернуться наверх

Линейные уравнения (типы и примеры решения)

Линейное уравнение — алгебраическое уравнение, в котором старший показатель переменной равен единице. Линейное уравнение имеет одну, две или три переменных, но не все линейные системы с 03 уравнениями.Обычно система линейных уравнений имеет только единственного решения , но иногда она имеет без решения или бесконечное число решений .

Линейное уравнение с двумя переменными
описывает отношения, в которых значение одной переменной, скажем, «x», зависит от
значение другой переменной говорит «y». Если есть две переменные, график
линейного уравнения будет прямой.

Стандартная форма линейного уравнения

Линейные уравнения имеют стандартную форму, например:

Ax + By = C

Здесь A, B и C — коэффициенты, а x
и y — переменные.

Общий вид линейного уравнения с двумя переменными:

y = mx + c, м 0

Формула линейного уравнения

Некоторые общие формулы:

  1. Форма пересечения наклона:
  2. Форма точки:
  3. Форма двух точек:

Примеры линейных уравнений

В приведенных выше примерах самый высокий показатель переменной равен 1.

  • Уравнение с одной переменной: Уравнение с одной переменной,
    например
  • 12x — 10 = 0
  • 12x = 10
  • Уравнение с двумя переменными: Уравнение с двумя переменными,
    например
  • 12x + 10y — 10 = 0
  • 12x + 23y = 20
  • Уравнение с тремя
    Переменные:
    An
    уравнение с тремя переменными, например
  • 12x
    + 10y -3z — 10 = 0
  • 12x + 23y — 12z = 20

Решенные примеры линейных уравнений:

Пример
Нет.1:

Решение:

Пример
№ 2:

Решение:

Пример
№ 3:

Решение:

В линейном уравнении знак равенства (=) делит уравнение
на две стороны, такие как L.H.S. и R.H.S.

В данном уравнении значение переменной, которая
заставляет L.H.S = R.H.S называется решением линейного уравнения.

Примеры
№ 1

х +
6 = 8 — линейное уравнение.

Здесь L.H.S. равно x + 6 и R.H.S. равно 8

Если мы положим x = 2, то левая часть будет 2 + 6, что равно правой стороне
сторона

Таким образом, решение данного линейного уравнения будет x = 2

Пример
№ 2

3x
— 2 = 2x — 3 — линейное уравнение

Если мы положим x = -1, то левая часть будет 3 (-1) — 2, а правая часть
будет 2 (-1) — 3

ср
получено,

-3
— 2 = -2 — 3

-5 =
-5

Следовательно, L.H.S. = R.H.S.

Итак, x = -1 — решение данного линейного уравнения.

Типы линейных уравнений:

Есть три типа линейных уравнений

  1. условный
    Уравнение
  2. Идентичность
    Уравнение
  3. Противоречие
    Уравнение

1. Условное уравнение:

Условное уравнение имеет только одно решение. Например,

2. Уравнение идентичности:

Тождественное уравнение всегда верно, и каждое действительное число является
решение его, следовательно, имеет бесконечное количество решений.Решение линейного
уравнение, которое имеет тождество, обычно выражается как

Иногда левая часть равна
в правую часть (вероятно, получим 0 = 0), поэтому нетрудно найти
из того, что это уравнение является тождеством. Например,

3. Уравнение противоречия:

А
Уравнение противоречия всегда ложно и не имеет решения. Противоречие
уравнение в основном выражается как:

Например,

Линейные уравнения представляют собой линии

Уравнение представляет собой линию на графике, и мы имеем
требовалось две точки, чтобы провести линию через эти точки.На графике переменные «x» и «y» показывают координаты «x» и «y».
графа. Если мы введем значение для «x», то мы сможем легко вычислить
соответствующее значение «y», и эти два значения покажут точку на графике.
Точно так же, если мы продолжаем помещать значения «x» и «y» в данную линейную
уравнение, мы можем получить прямую линию на графике.

Графическое представление линейного уравнения

Мы можем поместить значения «x» и «y» в уравнение, чтобы построить линейное уравнение.Мы можем использовать точки «перехвата». Необходимо соблюдать несколько нижеприведенных пунктов:

  • Поместите x = 0 в уравнение и решите относительно y и нанесите точку (0, y) на ось y
  • Поместите y = 0 в уравнение, решите относительно x и постройте точку (x, 0) на ось x
  • Наконец, проведите прямую линию между двумя точками

Проверьте
ваши навыки поиска решений этих линейных уравнений:

См. Также: Типы математических уравнений

Примеры расчетного поля — ArcMap | Документация

Ввод значений с клавиатуры — не единственный способ редактирования
значения в таблице.В некоторых случаях вы можете захотеть выполнить
математический расчет для установки значения поля для отдельной записи
или даже все записи. Вы можете выполнить
простые и сложные вычисления для всех или выбранных
записи.
Кроме того, вы можете рассчитать площадь, длину, периметр и др.
геометрические свойства полей в таблицах атрибутов. В разделах ниже приведены примеры использования калькулятора поля. Расчеты могут выполняться с использованием Python или VBScript.

Python — это
рекомендуемый язык сценариев для ArcGIS.Используйте Python, если вам нужен доступ к
функции геообработки, включая геометрию пространственных объектов. Принятие Python в качестве языка сценариев для ArcGIS предоставляет множество возможностей для выполнения вычислений.

Используйте VBScript, если у вас VBA или VBScript
опыт и знакомы с синтаксисом сценариев. Сохранено
.cal файлы из предыдущих версий ArcGIS могут работать или
требуют минимальных доработок. Если у вас есть код VBA из прошлых выпусков, в которых используется ArcObjects, вам нужно будет изменить свои вычисления.

Примечание:
  • Python применяет отступы как часть синтаксиса. Используйте два или четыре пробела для определения каждого логического уровня. Совместите начало и конец блоков операторов и будьте последовательны.
  • Поля расчетных выражений Python заключены в восклицательные знаки (!!).
  • При именовании переменных обратите внимание, что Python чувствителен к регистру, поэтому value не совпадает с Value.
  • VBScript не позволяет явно объявлять какие-либо типы данных; все переменные неявно являются Вариантными.Такие операторы, как Dim x as String, следует удалить или упростить до Dim x.
  • После ввода операторов вы можете нажать «Сохранить», если хотите записать их в файл. Кнопка «Загрузить» предложит вам найти и выбрать существующий файл расчета.

Простые вычисления

Примеры простых строк

Строки поддерживаются рядом строковых функций Python, включая регистр, rstrip и replace.

Сделать первый символ строки в поле CITY_NAME заглавной.

Удалите все пробелы в конце строки в поле CITY_NAME.

Замените все слова «калифорния» на «Калифорния» в поле STATE_NAME.

 ! STATE_NAME! .Replace ("калифорния", "Калифорния")
  

Доступ к символам в строковом поле можно получить путем индексирования и нарезки в Python. Индексирование выбирает символы в позиции индекса; нарезка выбирает группу символов.Предположим, что в следующей таблице! Fieldname! это строковое поле со значением «abcde».

Пример Объяснение Результат

! Fieldname! [0]

Первый символ.

«a»

! Fieldname! [- 2]

предпоследний символ.

«d»

! Fieldname! [1: 4]

Второй, третий и четвертый символы.

«bcd»

Python также поддерживает форматирование строк с помощью str.format () метод.

Объедините поля FieldA и FieldB, разделенные двоеточием.

  "{}: {}". Формат (! FieldA !,! FieldB!)
  
Строковые функции VBScript

Строки поддерживаются рядом строковых функций VBScript, включая Left, InStr и Chr. Ниже приведены некоторые примеры VBScript для часто используемых строковых функций в
Калькулятор поля.

Левая функция: возвращает вариант (строку), содержащий указанное количество символов из левой части строки.

  MyStr = Left ([MyField], 1)
  

Правая функция: возвращает вариант (строку), содержащий указанное количество символов с правой стороны строки.

  MyStr = Right ([MyField], 1)
  

Функция Mid: возвращает вариант (строку), содержащий указанное количество символов из строки.

  MyString = "Mid Function Demo" 'Создать текстовую строку
FirstWord = Mid (MyString, 1, 3) 'Возвращает «Mid»
LastWord = Mid (MyString, 14, 4) 'возвращает «Демо»
MidWords = Mid (MyString, 5) 'Возвращает «Демо функции»
  

Функция InStr: возвращает значение типа Variant (Long), определяющее позицию первого вхождения одной строки в другую.

  MyPosition = InStr ([адрес], "")
  

Функция замены: возвращает строку, в которой указанная подстрока была заменена другой подстрокой указанное количество раз.

  NewString = Replace ([комментарии], «#», «!»)
  

Функция Chr: возвращает строку, содержащую символ, связанный с указанным кодом символа.

  'Заменить символ возврата каретки восклицательным знаком
NewString = Replace ([комментарии], chr (13), «!»)
  

Оператор &: используется для объединения двух выражений в строку.

  MyStr = [MyField1] & "" & [MyField2]
  

Простые математические примеры

Python предоставляет инструменты для обработки чисел. Python также поддерживает ряд числовых и математических функций, включая математические, cmath, десятичные, случайные, itertools, functools и operator.

Оператор Объяснение Пример Результат

x + y

x plus

000

0

05 + 2,5

4,0

x — y

x минус y

3,3 — 2,2

1,1

x *

x * 9000 раз y

2.0 * 2,2

4,4

x / y

x делится на y

4,0 / 1,25

3,2

912

x разделить на y ( этажное подразделение )

4.0 / 1,25

3,0

x% y

x по модулю y

8% 3

2

28 отрицательное выражение

-x из x

x = 5

-x

-5

+ x

x is без изменений

x = 5

+ x

5

x ** y

x в степени y

2 ** 3

8

Вычислить объем сферы с учетом поля радиуса.

  4/3 * math.pi *! Радиус! ** 3
  

При проведении полевых расчетов с
Выражение Python, действуют математические правила Python. Например,
деление двух целочисленных значений всегда дает целочисленный вывод
(3/2 = 1). Выведите десятичный вывод следующим образом:

  • Одно из чисел в операции должно быть
    десятичное значение: 3,0 / 2 = 1,5.
  • Используйте функцию float для
    явно преобразовать значение в float:

      float (! Population!) /! Area!
      

Встроенные функции Python

Python имеет ряд встроенных функций, которые
доступны для использования, включая макс., мин., округление и сумму.

Вычислить максимальное значение для каждой записи из списка полей.

  макс ([! Field1 !,! Field2 !,! Field3!])
  

Вычислить сумму для каждой записи из списка полей.

  сумма ([! Field1 !,! Field2 !,! Field3!])
  

Использование блоков кода

С выражениями Python и параметром Блок кода вы можете делать следующее:

  • Использовать в выражении любую функцию Python.
  • Доступ к функциям и объектам геообработки.
  • Доступ к свойствам геометрии элемента.
  • Доступ к новому оператору случайного значения.
  • Реклассифицируйте значения с помощью логики «если-то-иначе».

Способ использования кодового блока определяется используемым синтаксическим анализатором. Калькулятор поля поддерживает парсеры Python и VBScript.

Parser Блок кода

Python

Поддерживает функциональность Python.Блок кода выражается с помощью функций Python (def). Свойства геометрии выражаются с помощью объектов геообработки, таких как объекты Point, где это необходимо.

VBScript

Расчеты выполняются с использованием VBScript.

Функции Python определяются с помощью ключевого слова def, за которым следует имя функции и входные аргументы функции.Функцию Python можно написать так, чтобы она принимала любое количество входных аргументов (включая вообще отсутствие). Значения возвращаются из функции с помощью оператора возврата. Имя функции — ваш выбор (не используйте пробелы или ведущие числа).

Примечание:

Если значение не возвращается явно из функции с оператором return, функция вернет None.

Примечание:

Помните, Python принудительно применяет отступы как часть синтаксиса. Используйте два или четыре пробела для определения каждого логического уровня.Совместите начало и конец блоков операторов и будьте последовательны.

Примеры кода — математика

Округлите значение поля до двух десятичных знаков.

  Выражение:
круглый (! площадь !, 2)

Парсер:
Python
  

Используйте математический модуль для преобразования метров в футы. Преобразование возводится в степень 2 и умножается на площадь.

  Парсер:
Python

Выражение:
MetersToFeet ((float (! Shape.area!)))

Блок кода:
def MetersToFeet (площадь):
    вернуть математику.pow (3,2808, 2) * площадь
  

Расчет полей с использованием логики Python

Классификация на основе значений полей.

  Парсер:
Python

Выражение:
Переклассифицировать (! WELL_YIELD!)

Блок кода:
def Рекласс (WellYield):
    if (WellYield> = 0 и WellYield <= 10):
        возврат 1
    elif (WellYield> 10 и WellYield <= 20):
        возврат 2
    elif (WellYield> 20 и WellYield <= 30):
        возврат 3
    Элиф (WellYield> 30):
        возврат 4
  

Вычислить поля с использованием логики с помощью VBScript

Условно выполняет группу операторов в зависимости от значения выражения.

  Парсер:
Сценарий VB

Выражение:
плотность

Блок кода:
Тусклая плотность
Если [POP90_SQMI] <100, то
плотность = "низкая"

elseif [POP90_SQMI] <300 Тогда
плотность = "средний"

еще
плотность = "высокая"
конец, если
  

Примеры кода - геометрия

Примечание:

Подробнее о преобразовании геометрических единиц см. В разделе «Преобразование геометрических единиц» ниже.

Вычислить площадь объекта.

  Парсер:
Python

Выражение:
! форма.площадь!
  

Вычислить максимальную x-координату элемента.

  Парсер:
Python

Выражение:
! shape.extent.XMax!
  

Вычислить количество вершин объекта.

  Парсер:
Python

Выражение:
MySub (! Форма!)

Блок кода:
def MySub (подвиг):
    partnum = 0

    # Подсчитать количество точек в текущем составном объекте
    partcount = feat.partCount
    pntcount = 0

    # Введите цикл while для каждой части функции (если
    # функция это произойдет только один раз)
    #
    в то время как partnum  

Для класса точечных объектов сместите координату x каждой точки на 100.

  Парсер:
Python

Выражение:
shiftXCoordinate (! ФОРМА!)

Блок кода:
def shiftXCoordinate (форма):
    shiftValue = 100
    точка = shape.getPart (0)
    point.X + = shiftValue
    точка возврата
  

Преобразование геометрических единиц

Свойства площади и длины поля геометрии могут быть изменены с помощью типов единиц, обозначенных знаком @.

  • Ключевые слова площадных единиц измерения:
    • ACRES | АРЕС | ГАРА | КВАДРАТИМЕТРЫ | КВАДРАТНЫЕ ДЕСИМЕТРЫ | ПЛОЩАДЬ | ПЛОЩАДЬ | КВАДРАКИЛОМЕТРЫ | СКВАРЕМЕТРЫ | ПЛОЩАДЬ | КВАДРАМИЛИМЕТРЫ | ПЛОЩАДЬ | КВАДРАТНЫЕ МАШИНЫ | НЕИЗВЕСТНО
  • Ключевые слова линейной единицы измерения:
    • САНТИМЕТРЫ | ДЕСИМАЛЬНЫЕ ГРАДУСЫ | ДЕСИМЕТРЫ | НОГИ | ДЮЙМЫ | КИЛОМЕТРЫ | МЕТРЫ | МИЛИ | МИЛЛИМЕТРЫ | МОРСКИЕ МИЛИ | ТОЧКИ | НЕИЗВЕСТНО | ЯРДЫ
Примечание:

Если данные хранятся в географической системе координат и указаны линейные единицы (например, футы), расчет длины будет преобразован с использованием геодезического алгоритма.

Внимание:

Преобразование единиц площади в данных в географической системе координат приведет к сомнительным результатам, поскольку десятичные градусы не совпадают по всему миру.

Вычислить длину объекта в ярдах.

  Парсер:
Python

Выражение:
[email protected]!
  

Вычислить площадь объекта в акрах.

  Парсер:
Python

Выражение:
[email protected]!
  

Геодезическая площадь и длина также могут быть рассчитаны с использованием свойств geodesicArea и geodesicLength с @, за которым следует ключевое слово единицы измерения.

Вычислить геодезическую длину объекта в ярдах.

  Парсер:
Python

Выражение:
[email protected]!
  

Вычислить геодезическую площадь объекта в акрах.

  Парсер:
Python

Выражение:
[email protected]!
  

Примеры кода - даты

Вычислить текущую дату.

  Парсер:
Python

Выражение:
time.strftime ("% d /% m /% Y")
  

Рассчитать текущую дату и время.

  Парсер:
Python

Выражение:
datetime.datetime.now ()
  

Вычислить дату 31 декабря 2000 года.

  Парсер:
Python

Выражение:
datetime.datetime (2000, 12, 31)
  

Вычислить количество дней между текущей датой и значением в поле.

  Парсер:
Python

Выражение:
(datetime.datetime.now () - arcpy.time.ParseDateTimeString (! field1!)). дней
  

Вычислить дату, добавив 100 дней к значению даты в поле.

  Парсер:
Python

Выражение:
arcpy.time.ParseDateTimeString (! field1!) + datetime.timedelta (дней = 100)
  

Вычислить день недели (например, воскресенье) для значения даты в поле.

  Парсер:
Python

Выражение:
arcpy.time.ParseDateTimeString (! field1!). strftime ('% A')
  

Примеры кода - строки

Вернуть три крайних правых символа.

  Парсер:
Python

Выражение:
! SUB_REGION! [- 3:]
  

Заменить любые регистры прописной P строчной p.

  Парсер:
Python

Выражение:
! STATE_NAME! .Replace ("P", "p")
  

Объедините два поля с помощью разделителя пробелов.

  Парсер:
Python

Выражение:
! SUB_REGION! + "" +! STATE_ABBR!
  

Преобразовать в правильный регистр

В следующих примерах показаны различные способы преобразования слов, чтобы каждое слово имело первый символ заглавной буквы, а остальные буквы - строчными.

  Парсер:
Python

Выражение:
''.присоединиться ([i.capitalize () для i в! STATE_NAME! .split ('')])
  
  Парсер:
Python

Выражение:
! STATE_NAME! .Title ()
  

Регулярные выражения

Модуль Python re предоставляет операции сопоставления регулярных выражений, которые можно использовать для выполнения сложных правил сопоставления шаблонов и замены строк.

Замените St или St., начинающиеся с новых слов в конце строки, словом Street.

  Парсер:
Python

Выражение:
update_street (! АДРЕС!)

Блок кода:
импорт ре
def update_street (street_name):
    вернуть ре.sub (r "" "\ b (St | St.) \ Z" "",
                  'Улица',
                  название улицы)
  

Накопительные и последовательные вычисления

Расчет последовательного идентификатора или числа на основе интервала.

  Парсер:
Python

Выражение:
автоматическое приращение()

Блок кода:
rec = 0
def autoIncrement ():
    глобальный рек
    pStart = 1 # скорректировать начальное значение, если требуется
    pInterval = 1 # настроить значение интервала, если требуется
    если (rec == 0):
        rec = pStart
    еще:
        rec = rec + pInterval
    вернуть рек
  

Вычислить накопительное значение числового поля.

  Парсер:
Python

Выражение:
накапливать (! FieldA!)

Блок кода:
всего = 0
def накопить (приращение):
    общая сумма
    если итого:
        всего + = приращение
    еще:
        total = приращение
    общая сумма возврата
  

Вычислить процентное увеличение числового поля.

  Парсер:
Python

Выражение:
процентУвеличить (с плавающей точкой (! FieldA!))

Блок кода:
lastValue = 0
def percentIncrease (newValue):
    глобальное lastValue
    если lastValue:
        процент = ((newValue - lastValue) / lastValue) * 100
    еще:
        процент = 0
    lastValue = newValue
    процент возврата
  

Случайные значения

Используйте пакет numpy site для вычисления случайных значений с плавающей запятой между 0.0 и 1.0.

  Парсер:
Python

Выражение:
getRandomValue ()

Блок кода:
import numpy

def getRandomValue ():
    вернуть numpy.random.random ()
  

Вычисление нулевых значений

Используя выражение Python, нулевые значения можно вычислить с помощью Python None.

Примечание:

Следующие вычисления будут работать, только если поле допускает значение NULL.

Используйте Python None для вычисления нулевых значений.

  Парсер:
Python

Выражение:
Никто
  

Связанные темы

PPT - ОБЩАЯ ПЛАТА РАФТЕРА С ИСПОЛЬЗОВАНИЕМ МЕТОДА КАЛЬКУЛЯТОРА Презентация PowerPoint | бесплатно для просмотра

PowerShow.com - ведущий веб-сайт для обмена презентациями / слайд-шоу. Независимо от того, является ли ваше приложение бизнесом, практическими рекомендациями, образованием, медициной, школой, церковью, продажами, маркетингом, онлайн-обучением или просто для развлечения, PowerShow.com - отличный ресурс. И, что лучше всего, большинство его интересных функций бесплатны и просты в использовании.

Вы можете использовать PowerShow.com, чтобы найти и загрузить примеры онлайн-презентаций PowerPoint ppt практически на любую тему, которую вы можете себе представить, чтобы вы могли узнать, как улучшить свои собственные слайды и

презентации бесплатно.Или используйте его, чтобы найти и загрузить высококачественные презентации PowerPoint ppt с практическими рекомендациями и иллюстрированными или анимированными слайдами, которые научат вас делать что-то новое, также бесплатно. Или используйте его для загрузки собственных слайдов PowerPoint, чтобы вы могли поделиться ими со своими учителями, классом, студентами, руководителями, сотрудниками, клиентами, потенциальными инвесторами или всем миром. Или используйте его для создания действительно крутых слайд-шоу из фотографий - с 2D и 3D переходами, анимацией и музыкой на ваш выбор - которыми вы можете поделиться со своими друзьями в Facebook или в кругах Google+.Это тоже бесплатно!

За небольшую плату вы можете получить лучшую в отрасли конфиденциальность в Интернете или публично продвигать свои презентации и слайд-шоу с высокими рейтингами. Но в остальном это бесплатно. Мы даже преобразуем ваши презентации и слайд-шоу в универсальный формат Flash со всей их оригинальной мультимедийной красотой, включая анимацию, эффекты перехода 2D и 3D, встроенную музыку или другой звук или даже видео, встроенное в слайды. Все бесплатно. Большинство презентаций и слайд-шоу на PowerShow.com можно бесплатно просматривать, многие даже можно бесплатно загрузить. (Вы можете выбрать, разрешить ли людям загружать ваши оригинальные презентации PowerPoint и слайд-шоу из фотографий за плату или бесплатно или вовсе.) Посетите PowerShow.com сегодня - БЕСПЛАТНО. Здесь действительно каждый найдет что-то для себя!

презентации бесплатно. Или используйте его, чтобы найти и загрузить высококачественные презентации PowerPoint ppt с практическими рекомендациями и иллюстрированными или анимированными слайдами, которые научат вас делать что-то новое, также бесплатно. Или используйте его для загрузки собственных слайдов PowerPoint, чтобы вы могли поделиться ими со своими учителями, классом, студентами, руководителями, сотрудниками, клиентами, потенциальными инвесторами или всем миром.Или используйте его для создания действительно крутых слайд-шоу из фотографий - с 2D и 3D переходами, анимацией и музыкой на ваш выбор - которыми вы можете поделиться со своими друзьями в Facebook или в кругах Google+. Это тоже бесплатно!

За небольшую плату вы можете получить лучшую в отрасли конфиденциальность в Интернете или публично продвигать свои презентации и слайд-шоу с высокими рейтингами. Но в остальном это бесплатно. Мы даже преобразуем ваши презентации и слайд-шоу в универсальный формат Flash со всей их оригинальной мультимедийной красотой, включая анимацию, эффекты перехода 2D и 3D, встроенную музыку или другой звук или даже видео, встроенное в слайды.